Angew Chem Int Ed Engl
January 2023
A visible light-induced Co-catalyzed highly regio- and stereoselective reductive coupling of vinyl azaarenes and alkynes has been developed. Notably, Hünig's base together with simple ethanol has been successfully applied as the hydrogen sources instead of commonly used Hantzsch esters in this catalytic photoredox reaction. This approach has considerable advantages for the straightforward synthesis of stereodefined multiple substituted alkenes bearing an azaarene motif, such as excellent regioselectivity (>20 : 1 for >30 examples) and stereoselectivity (>20 : 1 E/Z), broad substrate scope and good functional group compatibility under mild reaction conditions, which has been utilized in the concise synthesis of natural product monomorine I.
View Article and Find Full Text PDFChem Commun (Camb)
September 2020
An efficient Pd-catalyzed amidation of 1,3-diketones has been developed using carbon monoxide and organic azides. This reaction provides a step-economic approach to produce β-ketoamides from readily available compounds under mild ligand-, oxidant-, and base-free conditions. The mechanistic studies showed that the reaction occurred through an in situ generated isocyanate intermediate.
View Article and Find Full Text PDFAmide bond formation is one of the most important reactions in organic chemistry because of the widespread presence of amides in pharmaceuticals and biologically active compounds. Existing methods for amides synthesis are reaching their inherent limits. Described herein is a novel rhodium-catalyzed three-component reaction to synthesize amides from organic azides, carbon monoxide, and (hetero)arenes via nitrene-intermediates and direct C-H functionalization.
View Article and Find Full Text PDFA Co(II)/Ag(I) synergistically catalyzed three-component reaction of isocyanide with terminal alkyne and water to afford alkynamide derivatives is reported. The insertion of monoisocyanide into the C-H bond of terminal alkynes is an efficient, straightforward, atom-economical route to alkynamides, which are useful synthons in organic synthesis. This synergistic process achieves the cleavage of a C-H bond and the construction of new C-C and C═O bonds under mild conditions through the reaction of Co(II)-activated isocyanides and a Ag(I)-complex-activated terminal alkyne.
View Article and Find Full Text PDFA Co-catalyzed effective synthesis of N-sulfonylcarboxamides from the reaction of carboxylic acids and organic azides in the presence of isocyanide has been developed. The protocol has the advantages of short time, low temperature, and being oxidant-free, which provides a new and simple approach for the synthesis of N-sulfonylcarboxamides in good to excellent yields with a broad substrate scope.
View Article and Find Full Text PDFA chemoselective Co(ii)-catalyzed effective synthesis of sulfonylamidyl amide and 3-imine indole derivatives by using isocyanides and sulfonyl azides has been developed. This protocol provides a new, environmentally friendly and simple strategy for the efficient synthesis of the sulfonylamidyl amide and 3-imine indole derivatives with a wide range of substrates in the absence of any oxidants and additives.
View Article and Find Full Text PDFA Co(II)-catalyzed isocyanide insertion reaction with sulfonyl azides in alcohols to form sulfonyl isoureas via nitrene intermediate has been developed. This protocol provides a new, environmentally friendly, and simple strategy for the synthesis of sulfonyl isourea derivatives by employing a range of substrates under mild conditions.
View Article and Find Full Text PDFA cobalt-catalyzed [4 + 1] cycloaddition of easily accessible amides with isocyanides for the efficient synthesis of 3-iminoisoindolinone derivatives in high yield under mild conditions via intramolecular C(sp)-H activation and isocyanide insertion is reported. The annulation was found to be applicable to a broad range of substrates, including arylamides, heteroarylamides, and acrylamide derivatives. Strongly coordinating N-heterocyclic directing groups such as pyridine, pyrimidine, and even pyrazole were fully tolerated in this cobalt-catalyzed C-H activation reaction.
View Article and Find Full Text PDFAn efficient and practical synthesis of benzothiazine by KS initiated sulfur insertion reaction with enaminones electron catalysis is developed. This protocol provides a new, environment-friendly and simple strategy to construct benzothiazine derivatives formation of two C-S bonds under transition metal-free, additive-free and oxidant-free conditions. KS not only provides the sulfur insertion source, but also ignites the reaction through the formation of a trisulfur radical anion and electrons in DMF.
View Article and Find Full Text PDFPalladium-catalyzed intramolecular Heck reaction and aminopalladation of N-(2-(1-phenylvinyl)phenyl)aniline for the efficient synthesis of dihydroindeno[1,2,3-kl]acridines and 3-arylindoles via tuning of the phosphine ligands and solvents under two optimized conditions are reported. The reaction follows a 1,4-Pd migration, aminopalladation, C(sp(2))-H activation, as well as five- and six-membered-ring fusion to form different products. The dihydroindeno[1,2,3-kl]acridine derivatives showed higher triplet energy (ET) levels than common blue phosphorescent dopant and may serve as good host candidates for blue triplet emitters.
View Article and Find Full Text PDFAn efficient method for the construction of 6-alkyl phenanthridines by tert-butyl peroxybenzoate (TBPB)-mediated 2-isocyanobiaryl insertion with 1,4-dioxane was established. Two new C-C bonds were formed in this reaction via a sequential C(sp(3))-H/C(sp(2))-H bond functionalization under metal-free conditions.
View Article and Find Full Text PDF