Chaotic maps were frequently introduced to generate random numbers and used to replace the pseudo-random numbers distributed in Gauss distribution in computer engineering. These improvements in optimization were called the chaotic improved optimization algorithm, most of them were reported better in literature. In this paper, we collected 19 classical maps which could all generate pseudo-random numbers in an interval between 0 and 1.
View Article and Find Full Text PDFA new swarm-based optimization algorithm called the Aquila optimizer (AO) was just proposed recently with promising better performance. However, as reported by the proposer, it almost remains unchanged for almost half of the convergence curves at the latter iterations. Considering the better performance and the lazy latter convergence rates of the AO algorithm in optimization, the multiple updating principle is introduced and the heterogeneous AO called HAO is proposed in this paper.
View Article and Find Full Text PDFBecause of the No Free Lunch (NFL) rule, we are still under the way developing new algorithms and improving the capabilities of the existed algorithms. Under consideration of the simple and steady convergence capability of the sine cosine algorithm (SCA) and the fast convergence rate of the Harris Hawk optimization (HHO) algorithms, we hereby propose a new hybridization algorithm of the SCA and HHO algorithm in this paper, called the CSCAHHO algorithm henceforth. The energy parameter is introduced to balance the exploration and exploitation procedure for individuals in the new swarm, and chaos is introduced to improve the randomness.
View Article and Find Full Text PDFComput Intell Neurosci
January 2020
With a hypothesis that the social hierarchy of the grey wolves would be also followed in their searching positions, an improved grey wolf optimization (GWO) algorithm with variable weights (VW-GWO) is proposed. And to reduce the probability of being trapped in local optima, a new governing equation of the controlling parameter is also proposed. Simulation experiments are carried out, and comparisons are made.
View Article and Find Full Text PDFThe intracellular calcium dynamics in vascular endothelial cells (VECs) in response to wall shear stress (WSS) and/or adenosine triphosphate (ATP) have been commonly regarded as an important factor in regulating VEC function and behavior including proliferation, migration and apoptosis. However, the effects of time-varying ATP signals have been usually neglected in the past investigations in the field of VEC mechanobiology. In order to investigate the combined effects of WSS and dynamic ATP signals on the intracellular calcium dynamic in VECs, a Y-shaped microfluidic device, which can provide the cultured cells on the bottom of its mixing micro-channel with stimuli of WSS signal alone and different combinations of WSS and ATP signals in one single micro-channel, is proposed.
View Article and Find Full Text PDF