A palladium-catalyzed regioselective and asymmetric allylic alkylation of azlactones with MBH carbonates has been developed with chiral oxalamide-phosphine ligands. The corresponding reaction afforded a range of optically active γ-arylidenyl glutamic acid derivatives bearing an α-chiral quaternary stereocenter in good yields with excellent linear regio- and high enantioselectivity. This protocol furnishes an alternative approach for the construction of enantio-enriched unnatural α-amino acid derivatives.
View Article and Find Full Text PDFIntercalation-type layered oxides have been widely explored as cathode materials for aqueous zinc-ion batteries (ZIBs). Although high-rate capability has been achieved based on the pillar effect of various intercalants for widening interlayer space, an in-depth understanding of atomic orbital variations induced by intercalants is still unknown. Herein, we design an NH-intercalated vanadium oxide (NH-VO) for high-rate ZIBs, together with deeply investigating the role of the intercalant in terms of atomic orbital.
View Article and Find Full Text PDFInterface engineering of zinc metal anodes is a promising remedy to relieve their inferior stability caused by dendrite growth and side reactions. Nevertheless, the low affinity and additional weight of the protective coating remain obstacles to their further implementation. Here, aroused by DFT simulation, self-assembled monolayers (SAMs) are selectively constructed to enhance the stability of zinc metal anodes in dilute aqueous electrolytes.
View Article and Find Full Text PDFThe differences in catalytic activity between two catalyst ligands of Buchwald-Hartwig amination reaction, BrettPhos versus RuPhos, were investigated using density functional theory (DFT) calculations. The reaction process consists of three consecutive steps: (1) oxidative addition, (2) deprotonation, and (3) reductive elimination. Among them, the rate-limiting step of Pd-BrettPhos catalytic system is oxidative addition but that of Pd-RuPhos catalytic system is reductive elimination due to their differences in steric hindrance and electronic structure.
View Article and Find Full Text PDFThe modulation of selectivity of transfer hydrogenation of alkynes to E-alkenes using formic acid is a challenge due to the limited knowledge of the complex reaction network, including oxidative addition, decarboxylation, reductive elimination, Z→E isomerization, and β-H elimination. Here, the search for the reaction pathway and experiment explorations revealed that the selectivity of Pd(PMe)-catalyzed hydrogenation of 1-phenyl-1-propyne to (E)-1-phenylpropene is controlled by the water content in the aqueous solution of formic acid and the reaction time. The combination of an automatic reaction pathway search and density functional theory (DFT) calculations found that the intermolecular hydrogen bonds with water molecules have an influence on lowering the free energy activation barrier of transition states in the oxidative addition steps.
View Article and Find Full Text PDFPhys Chem Chem Phys
June 2019
The interaction between monolayered arsenene and fourteen kinds of solvents is found to be correlated with the extent of charge transfer from arsenene to the solvents by density functional theory calculations. Among them, three kinds of aprotic solvents (cyclohexane, tetrahydrofuran and chloroform), representing different adsorbability with arsenene, were selected to exfoliate bulk arsenic crystals into nanosheets in experiments. The as-prepared concentrations of the three dispersions vary monotonically with the calculated adsorption energies and charge transfer per contact area.
View Article and Find Full Text PDFThe joint computational and experimental efforts reveal that the organic molecule 1,2-diisocyano-4,5-dimethylbenzene (1) acts as both a reactant and a photosensitizer (PS) in a metal-free reaction with perfluoroalkylhalide (2) to produce 2-perfluoroalkyl quinoxalines (3) under visible light. Both the π-π stacking aggregation in crystals and the solvation in various solvents of PS 1 exhibited visible-light absorption at 466 nm in spite of its smaller coefficient than that of the ultraviolet-light absorption. Such an aggregation-assisted visible-light absorption phenomenon is rationalized by theoretical calculations of the condensed-phase properties with the consideration of the explicit polarization effect from the neighboring molecules.
View Article and Find Full Text PDFThe origin of the enantio- and regioselectivity of ring-opening reaction of oxabicyclic alkenes catalyzed by rhodium/Josiphos has been examined using M06-2X density functional theory(DFT). DFT calculations predict a 98% ee for the enantioselectivity and only the 1,2-trans product as one regio- and diastereomer, in excellent agreement with experimental results. The solvent tetrahydrofuran(THF) plays a key role in assisting nucleophilic attack.
View Article and Find Full Text PDFA formal thio [3 + 3]-cyclization catalyzed by a DPEN-derived chiral thiourea has been reported for the construction of optically active thiopyrano-indole annulated heterocyclic compounds in high yields with excellent enantioselectivities. The high reactivity between indoline-2-thione (keto-S) and 2-benzylidenemalononitrile has also been supported by density functional theory (DFT) calculations.
View Article and Find Full Text PDFA diastereo- and enantio-selective domino Michael-cyclization-tautomerization reaction of isatylidene malononitriles with α,α-dicyanoalkenes catalyzed by a cinchona alkaloid-derived bifunctional thiourea catalyst has been developed. A series of multi-functionalized spiro oxindole diene derivatives have been obtained in good to excellent yields (up to 97%) with good to excellent enantioselectivities (up to 96%) as well as good diastereoselectivities (up to 7.9 : 1).
View Article and Find Full Text PDF