Publications by authors named "Zheng-Gen Jin"

Unlabelled: Coronavirus disease 2019 (COVID-19) is caused by the infection of a coronavirus, named as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronaviruses can be replicated in the infected host cells. Coronavirus replication involves various steps, including membrane fusion, peri-nuclear particle formation, and matrix vesicle transport to the cell membrane the endoplasmic reticulum-Golgi-lysosome route.

View Article and Find Full Text PDF

Background: Atherosclerosis is the most common cause of cardiovascular diseases. Clinical studies indicate that loss-of-function ASGR1 (asialoglycoprotein receptor 1) is significantly associated with lower plasma cholesterol levels and reduces cardiovascular disease risk. However, the effect of ASGR1 on atherosclerosis remains incompletely understood; whether inhibition of ASGR1 causes liver injury remains controversial.

View Article and Find Full Text PDF

The probability of cardiovascular events has been reported lower in rheumatoid arthritis (RA) patients treated with leflunomide. However, the anti-atherosclerotic and cardiovascular protective effects and metabolism of leflunomide are not explored. In this study, we assessed the potential benefits of leflunomide on atherosclerosis and revealed the underlying mechanism.

View Article and Find Full Text PDF

Acute liver failure (ALF) is a deadly illness due to insufficient detoxification in liver induced by drugs, toxins, and other etiologies, and the effective treatment for ALF is very limited. Among the drug-induced ALF, acetaminophen (APAP) overdose is the most common cause. However, the molecular mechanisms underlying APAP hepatoxicity remain incompletely understood.

View Article and Find Full Text PDF

Inflammatory response in the pulmonary endothelium drives the pathogenesis of acute lung injury and sepsis. Sirtuin 6 (SIRT6), a member of class III NAD+-dependent deacetylases belonging to the sirtuin family, regulates senescence, metabolism, and inflammation and extends lifespan in mice and model organisms. However, the role of SIRT6 in pulmonary endothelial inflammation is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • This study looks at how a protein called JCAD affects problems in the heart, specifically related to blood clotting and artery health.
  • Researchers used special mice without JCAD to see how they reacted to injuries in their blood vessels and found that these mice had fewer blood clots forming.
  • In people with heart issues, higher levels of JCAD were linked to more problems with blood clotting, suggesting that JCAD is important in how our bodies respond to blood vessel injuries.
View Article and Find Full Text PDF

Background: Heart failure with preserved ejection fraction (HFpEF) is a growing health problem without effective therapies. Epidemiological studies indicate that diabetes is a strong risk factor for HFpEF, and about 45% of patients with HFpEF are suffering from diabetes, yet the underlying mechanisms remain elusive.

Methods: Using a combination of echocardiography, hemodynamics, RNA-sequencing, molecular biology, in vitro and in vivo approaches, we investigated the roles of SIRT6 (sirtuin 6) in regulation of endothelial fatty acid (FA) transport and HFpEF in diabetes.

View Article and Find Full Text PDF

Acetaminophen overdose is a leading cause of acute live failure worldwide. N-acetylcysteine (NAC), as the only antidote, is limited due to its narrow therapeutic time window. Here we demonstrated that Urolithin A (UA), a metabolite of ellagitannin natural products in the gastrointestinal flora, protected against acetaminophen-induced liver injury (AILI) and is superior to NAC in terms of dosage and therapeutical time window.

View Article and Find Full Text PDF

Angiogenesis is a physiological process for the formation of new blood vessels from the pre-existing vessels and it has a vital role in the survival and growth of neoplasms. During tumor angiogenesis, the activation of the gene transcriptions in vascular endothelial cells (ECs) plays an essential role in the promotion of EC proliferation, migration, and vascular network development. However, the molecular mechanisms underlying transcriptional regulation of EC and tumor angiogenesis remains to be fully elucidated.

View Article and Find Full Text PDF

Angiogenesis, the formation of new blood vessels, is tightly regulated by gene transcriptional programs. Yin Ying 1 (YY1) is a ubiquitously distributed transcription factor with diverse and complex biological functions; however, little is known about the cell-type-specific role of YY1 in vascular development and angiogenesis. Here we report that endothelial cell (EC)-specific deletion in mice led to embryonic lethality as a result of abnormal angiogenesis and vascular defects.

View Article and Find Full Text PDF

Background And Aims: Liver fibrosis (LF) is a central pathological process that occurs in most types of chronic liver diseases. Advanced LF causes cirrhosis, hepatocellular carcinoma, and liver failure. However, the exact molecular mechanisms underlying the initiation and progression of LF remain largely unknown.

View Article and Find Full Text PDF

Serum response factor (SRF), a key transcription factor, plays an important role in regulating cell functions such as proliferation and differentiation. Most proteins are unstable, and protein stability is regulated through the ubiquitin-proteasome system (UPS) or the autophagy lysosome pathway (ALP). Whether SRF is degraded and what mechanisms control SRF protein stability remain unexplored.

View Article and Find Full Text PDF

Aims: Recent genome-wide association studies (GWAS) have identified that the JCAD locus is associated with risk of coronary artery disease (CAD) and myocardial infarction (MI). However, the mechanisms whereby candidate gene JCAD confers disease risk remain unclear. We addressed whether and how JCAD affects the development of atherosclerosis, the common cause of CAD.

View Article and Find Full Text PDF

Liver fibrosis is a common consequence of various chronic hepatitis and liver injuries. The myofibroblasts, through the accumulation of extracellular matrix (ECM) proteins, are closely associated with the progression of liver fibrosis. However, the molecular mechanisms underlying transcriptional regulation of fibrogenic genes and ECM proteins in myofibroblasts remain largely unknown.

View Article and Find Full Text PDF

Hutchinson-Gilford progeria syndrome (HGPS) is an ultrarare and fatal disease with features of premature aging and cardiovascular diseases (atherosclerosis, myocardial infarction, and stroke). Several landmark studies in 2018-2019 have revealed novel mechanisms underlying cardiovascular pathologies in HGPS, and implicate future potential therapies for HGPS, and possibly physiological aging.

View Article and Find Full Text PDF

Atherosclerosis is the primary underlying cause of cardiovascular disease which preferentially develops at arterial regions exposed to disturbed flow (DF), but much less at regions of unidirectional laminar flow (UF). Recent studies have demonstrated that DF and UF differentially regulate important aspects of endothelial function, such as vascular inflammation, oxidative stress, vascular tone, cell proliferation, senescence, mitochondrial function, and glucose metabolism. DF and UF regulate vascular pathophysiology via differential regulation of mechanosensitive transcription factors (MSTFs) (KLF2, KLF4, NRF2, YAP/TAZ/TEAD, HIF-1α, NF-κB, AP-1, and others).

View Article and Find Full Text PDF

Endothelial dysfunction is the common molecular basis of multiple human diseases, such as atherosclerosis, diabetes, hypertension, and acute lung injury. Therefore, primary isolation of high-purity endothelial cells (ECs) is crucial to study the mechanisms of endothelial function and disease pathogenesis. Mouse lung ECs (MLECs) are widely used in vascular biology and lung cell biology studies such as pulmonary inflammation, angiogenesis, vessel permeability, leukocyte/EC interaction, nitric oxide production, and mechanotransduction.

View Article and Find Full Text PDF

is a human-specific, vascular cell-enriched long-noncoding RNA (lncRNA) that regulates vascular smooth muscle cell and endothelial cell (EC) phenotypes. The underlying mechanisms of action of in these and other cell types is unknown. Here, levels of RNA are shown to be elevated in several differentiated human EC lineages subjected to laminar shear stress.

View Article and Find Full Text PDF

Atherosclerosis, the principal cause of cardiovascular death worldwide, is a pathological disease characterized by fibro-proliferation, chronic inflammation, lipid accumulation, and immune disorder in the vessel wall. As the atheromatous plaques develop into advanced stage, the vulnerable plaques are prone to rupture, which causes acute cardiovascular events, including ischemic stroke and myocardial infarction. Emerging evidence has suggested that atherosclerosis is also an epigenetic disease with the interplay of multiple epigenetic mechanisms.

View Article and Find Full Text PDF

: Atherosclerosis is a chronic inflammatory and epigenetic disease that is influenced by different patterns of blood flow. However, the epigenetic mechanism whereby atheroprotective flow controls endothelial gene programming remains elusive. Here, we investigated the possibility that flow alters endothelial gene expression through epigenetic mechanisms.

View Article and Find Full Text PDF

Atherosclerosis is a chronic inflammatory and lipid-depository disease that eventually leads to acute cardiovascular events. Emerging evidence supports that epigenetic processes such as DNA methylation, histone modification, and noncoding RNAs play an important role in plaque progression and vulnerability, highlighting the therapeutic potential of epigenetic drugs in cardiovascular therapeutics.

View Article and Find Full Text PDF

Sirtuin 1 (SIRT1) is an NAD-dependent protein deacetylase that plays a critical role in controlling energy metabolism, stress response and aging. Hence, enhancing SIRT1 activity could be a potential therapeutic strategy to treat metabolic diseases such as diabetes. However, pharmacological activators for SIRT1 are scarce to date.

View Article and Find Full Text PDF

MicroRNA miR-126 has been shown to be required for proper angiogenesis in several models. However, its expression, regulation and function in the mouse choroid remain unclear. Our previous data has shown that miR-126 expression is enriched in the endothelial cells (ECs) of the mouse choroid.

View Article and Find Full Text PDF

Background: Kruppel-like factor 2 (KLF2) is an important zinc-finger transcription factor that maintains endothelial homeostasis by its anti-inflammatory, -thrombotic, -oxidative, and -proliferative effects in endothelial cells. In light of the potent vasoprotective effects of KLF2, modulating KLF2 expression or function could give rise to new therapeutic strategies to treat cardiovascular diseases.

Methods And Results: High-throughput drug screening based on KLF2 promoter luciferase reporter assay was performed to screen KLF2 activators.

View Article and Find Full Text PDF

The transcription factor Kruppel-like factor 2 (KLF2) is a critical anti-inflammatory and anti-atherogenic molecule in vascular endothelium. Enhancing KLF2 expression and activity improves endothelial function and prevents atherosclerosis. However, the pharmacological and molecular regulators for KLF2 are scarce.

View Article and Find Full Text PDF