Orchestrating complex behaviors, such as approaching and consuming food, is critical for survival. In addition to hypothalamus neuronal circuits, the nucleus accumbens (NAc) also controls appetite and satiety. However, specific neuronal subtypes of the NAc that are involved and how the humoral and neuronal signals coordinate to regulate feeding remain incompletely understood.
View Article and Find Full Text PDFPredatory hunting is an important type of innate behavior evolutionarily conserved across the animal kingdom. It is typically composed of a set of sequential actions, including prey search, pursuit, attack, and consumption. This behavior is subject to control by the nervous system.
View Article and Find Full Text PDFThe striatum plays a critical role in regulating addiction-related behaviors. The conventional dichotomy model suggests that striatal D1/D2 medium spiny neurons (MSNs) positively/negatively regulate addiction-related behaviors. However, this model does not account for the neuronal heterogeneity and functional diversity of the striatum, and whether MSN subtypes beyond the pan-D1/D2 populations play distinct roles in drug addiction remains unknown.
View Article and Find Full Text PDFAll animals possess a plethora of innate behaviors that do not require extensive learning and are fundamental for their survival and propagation. With the advent of newly-developed techniques such as viral tracing and optogenetic and chemogenetic tools, recent studies are gradually unraveling neural circuits underlying different innate behaviors. Here, we summarize current development in our understanding of the neural circuits controlling predation, feeding, male-typical mating, and urination, highlighting the role of genetically defined neurons and their connections in sensory triggering, sensory to motor/motivation transformation, motor/motivation encoding during these different behaviors.
View Article and Find Full Text PDFSequential encoding of motor programs is essential for behavior generation. However, whether it is critical for instinctive behavior is still largely unknown. Mouse hunting behavior typically contains a sequential motor program, including the prey search, chase, attack, and consumption.
View Article and Find Full Text PDFThe neural substrates for predatory hunting, an evolutionarily conserved appetitive behavior, remain largely undefined. Photoactivation of zona incerta (ZI) GABAergic neurons strongly promotes hunting of both live and artificial prey. Conversely, photoinhibition of these neurons or deletion of their GABA function severely impairs hunting.
View Article and Find Full Text PDFAGRP (agouti-related neuropeptide) expressing inhibitory neurons sense caloric needs of an animal to coordinate homeostatic feeding. Recent evidence suggests that AGRP neurons also suppress competing actions and motivations to mediate adaptive behavioral selection during starvation. Here, in adult mice of both sexes we show that AGRP neurons form inhibitory synapses onto ∼30% neurons in the medial preoptic area (mPOA), a region critical for maternal care.
View Article and Find Full Text PDFThe homeostatic control of body temperature is essential for survival in mammals and is known to be regulated in part by temperature-sensitive neurons in the hypothalamus. However, the specific neural pathways and corresponding neural populations have not been fully elucidated. To identify these pathways, we used cFos staining to identify neurons that are activated by a thermal challenge and found induced expression in subsets of neurons within the ventral part of the lateral preoptic nucleus (vLPO) and the dorsal part of the dorsomedial hypothalamus (DMD).
View Article and Find Full Text PDF