Publications by authors named "Zheng Yongqiu"

Resistance is a major concern for colorectal cancer patients undergoing chemotherapy. Piperlongumine (PL) has been proven to effectively reverse drug resistance in several types of cancers; however, the mechanisms associated with the reversal effect and the targets of PL in cancer drug resistance are still unclear. In this research, the reversal effects and associated mechanisms of PL in 5-Fluorouracil (5-FU) resistance colorectal cancer were investigated both in vitro and in vivo.

View Article and Find Full Text PDF

Demodulation of fiber optic Fabry-Pérot (F-P) acoustic sensors with high sensitivity and a large dynamic range continues to pose significant challenges. In this paper, we propose an advanced phase-generated carrier (PGC) demodulation algorithm, applied innovatively to membrane-free F-P acoustic sensors operating under high sound pressure. The algorithm optimizes acoustic demodulation results by adjusting the mixing phase delay, achieving the best signal to noise and distortion ratio (SINAD) and total harmonic distortion (THD) (<1%).

View Article and Find Full Text PDF

Objective: To explore the therapeutic effect and target of atractylenolide I (AT-I) on post-infectious irritable bowel syndrome (PI-IBS) rats.

Methods: Therefore, the preliminarily mechanism of AT-I in anti-PI-IBS were first predicted by network pharmacology and molecular docking, then the possible signaling pathways were systematically analyzed. Finally, the potential therapeutic targets and possible signaling pathways of AT-I on PI-IBS in Sprague-Dawley (SD) rat model were verified by experiments.

View Article and Find Full Text PDF

The rigid Fabry-Pérot (F-P) cavity has emerged as the preferred core sensing component for optical pressure, vibration, and acoustic sensing in harsh environments, owing to its high reliability and structural stability. However, due to the inadequate temperature resistance of the optical dielectric film, maintaining a high level of precision in the rigid F-P cavity at elevated temperatures proves to be challenging. Volume Bragg grating (VBG) is a three-dimensional optical element modified by a femtosecond laser within a transparent glass medium to create a periodic refractive index distribution.

View Article and Find Full Text PDF

F-P (Fabry-Perot) pressure sensors have a wide range of potential applications in high-temperature, high-pressure, and high-dynamic environments. However, existing demodulation methods commonly rely on spectrometers, which limits their application to high-frequency pressure signal acquisition. To solve this problem, this study developed a self-compensated, three-wavelength demodulation system composite with an F-P pressure sensor and a thermocouple to construct a comprehensive sensing system.

View Article and Find Full Text PDF

In the field of in situ measurement of high-temperature pressure, fiber-optic Fabry-Perot pressure sensors have been extensively studied and applied in recent years thanks to their compact size and excellent anti-interference and anti-shock capabilities. However, such sensors have high technological difficulty, limited pressure measurement range, and low sensitivity. This paper proposes a fiber-optic Fabry-Perot pressure sensor based on a membrane-hole-base structure.

View Article and Find Full Text PDF

The condition monitoring (CM) of sealed metal compartments (SMCs) is an urgently required restructure. Ultrasound penetrates SMCs to power and communicate with built-in sensors, enabling the CM of SMCs. However, current ultrasonic wireless power transfer and data communication (UWPTADC) systems are large and complex, and limited by the efficiency of energy transfer and data reliability.

View Article and Find Full Text PDF

Objective: To explore the functional role of the drug-dependent mesenchymal-epithelial transition (Met)-axiation "π" structural module of neurogenesis after processing by three components of Qingkailing injection in neurogenesis and angiogenesis in cerebral ischemia.

Methods: We used a Glutathione S-transferase (GST)-pull down assay, isothermal titration calorimetry assay, and other related methods to identify the relationships among Met, inositol polyphosphate phosphatase like 1 (Inppl1), and death associated protein kinase 3 (Dapk3) in this allosteric module. The biological effects of the modules of neurons generation composed of Met, Inppl1, and Dapk3 were measured through Western blot, apoptosis analysis, and double immunofluorescence labeling.

View Article and Find Full Text PDF

With the development of society and the advancement of technology, the emergence of the Internet of Things (IoT) has changed people's lifestyles and raised the demand for energy to a new level. However, there are some drawbacks in terms of energy supply for IoT sensors, such as limited battery capacity and limitations in replacement and maintenance. Therefore, it has become urgent to develop a sustainable green energy source (wind energy) using the surrounding environment.

View Article and Find Full Text PDF

Long nanosecond pulses have been proven to be efficient at enhancing underwater LIBS emission. However, the quantitative analytical capability of underwater long-pulse LIBS has yet to be further revealed. In this work, we investigated the spectral characteristics by irradiating with a laser pulse of 120 ns duration.

View Article and Find Full Text PDF

Membrane-free acoustic sensors based on new principle and structure are becoming a research hotspot, because of many advantages, e.g., their wide bandwidth and high sensitivity.

View Article and Find Full Text PDF

The sensors with a wide gas pressure detection range are urgently demanded in many industrial applications. Here, we propose a gas pressure sensor based on an all-solid open Fabry-Pérot interferometer, which is prepared by using optical contact bonding to ensure high structural strength and high-quality factor of 8.8 × 10.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) has a high prevalence in patients with non-alcoholic fatty liver disease (NAFLD); however, the underlying mechanism is unclear. To address this, our study established a rat model with both NAFLD and RA by feeding a high-fat diet (HFD) and administering intradermal injection of Freund's complete adjuvant (FCA) with bovine type II collagen. Collagen-induced RA (CIA) was confirmed by hind paw swelling and histological examination.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Astragali Radix (AR), the root of Astragalus membranaceus (Fisch.) Bge. or Astragalus membranaceus (Fisch.

View Article and Find Full Text PDF

Acoustic detection based on optical technology has moved in the direction of high sensitivity and resolution. In this study, an optical waveguide acoustic sensor based on a ring resonator with the evanescent field is proposed. Grooves are introduced into the ring resonators as a direct sensitive structure to excite the evanescent field.

View Article and Find Full Text PDF

Wind energy as a renewable energy source is easily available and widely distributed in cities. However, current wind-energy harvesters are inadequate at capturing energy from low-speed winds in urban areas, thereby limiting their application in distributed self-powered sensor networks. A triboelectric-electromagnetic hybrid harvester with a low startup wind speed (LSWS-TEH) is proposed that also provides output power within a wide range of wind speeds.

View Article and Find Full Text PDF

The applications of fiber-optic acoustic sensors are expanded to the high-temperature field, but it still faces challenges to realize the wide-band and high-sensitivity acoustic signal detection in high-temperature environments. Here, we propose a miniature membrane-free fiber-optic acoustic sensor based on a rigid Fabry-Pérot (F-P) cavity and construct an acoustic signal detection system. The system can achieve high-sensitivity acoustic detection while maintaining a wide frequency band in temperatures ranging from 20 °C to 200 °C.

View Article and Find Full Text PDF

Postinfectious irritable bowel syndrome (PI-IBS) is a highly prevalent gastrointestinal disorder associated with immune dysregulation and depression- and anxiety-like behaviors. Through traditional medicine, the active ingredient of Paeoniae Radix called paeoniflorin (PF) was previously found to prevent the symptoms of PI-IBS. However, there is limited information on the effects of PF on intestinal function and depression- and anxiety-like symptoms in PI-IBS animal models.

View Article and Find Full Text PDF

A series of novel nitric oxide (NO)-releasing 5,8-quinolinedione/furoxan hybrids (8a-h and 9a-h) were designed and synthesized through coupling different alkanolamine substituted phenylsulfonyl furoxan with 5,8-quinolinedione. Most compounds displayed high cytotoxic activity against drug-sensitive/-resistant cancer cells. In particular, the IC of 9a (0.

View Article and Find Full Text PDF

A compact fiber-optic Fabry-Perot (F-P) cavity for a sensor is designed based on a sandwich structure, adopting direct bonding of quartz glass. The reflective F-P cavity is manufactured by a fiber optic with a quartz glass ferrule and the sandwich structure with an air cavity, which is achieved by direct bonding of quartz glass. This fabrication process includes plasma surface activation, hydrophilic pre-bonding, high-temperature annealing, and dicing.

View Article and Find Full Text PDF

Due to the excellent directivity, strong penetrability, and no electromagnetic shielding effect, ultrasonic waves have good potential for wireless energy transmission and information transfer inside and outside of sealed metal devices. However, traditional ultrasonic based energy transmission methods usually result in considerable energy consumption because of the impedance mismatch during the impedance modulation of the communication. This paper presents an optimal design method for efficient energy transfer during ultrasonic communication.

View Article and Find Full Text PDF

The ideal development direction of the fiber-optic acoustic sensor (FOAS) is toward broadband, a high sensitivity and a large dynamic range. In order to further promote the acoustic detection potential of the Fabry-Pérot etalon (FPE)-based FOAS, it is of great significance to study the acoustic performance of the FOAS with the quality (Q) factor of FPE as the research objective. This is because the Q factor represents the storage capability and loss characteristic of the FPE.

View Article and Find Full Text PDF

The optical acoustic detection system based on the Fabry Pérot Etalon (FPE) with high quality-factor (High Q) and stability structure is described and tested. The FPE contains two high-reflectivity Plano-Concave lenses, achieving high fineness and stability. The protective structure of the confocal stabilized FPE is composed of an invar tube, copper sheath, Bakelite sheath and aluminum housing to protect the sensor from the effects of ambient temperature and vibration.

View Article and Find Full Text PDF

Accumulating evidence suggests that the polymerase I and transcript release factor (PTRF), a key component of the caveolae structure on the plasma membrane, plays a pivotal role in suppressing the progression of colorectal cancers. However, the role of PTRF in the development of functional gastrointestinal (GI) disorders remains unclear. Post-infectious irritable bowel syndrome (PI-IBS) is a common functional GI disorder that occurs after an acute GI infection.

View Article and Find Full Text PDF

A micro-fiber-optic acoustic sensor based on the high-quality-factor (high-Q) resonance effect that uses a Fabry-Pérot etalon (FPE) is presented in this study. The device has been demonstrated experimentally to be a high-sensitivity acoustic sensor with a large dynamic range over a wide frequency band. Optical contact technology was used to improve the robustness of the FPE, which consists of two parallel lenses with high reflectivity exceeding 99%.

View Article and Find Full Text PDF