Background: Bisphenol A (BPA) has been identified as an endocrine disruptor with numerous detrimental effects on human health. There is an urgent need to develop fluorescence/colorimetric dual-mode sensing approaches with expanded detection linear range, increased accuracy, and enhanced application flexibility for BPA detection. The utilization of fluorescence and colorimetric signals in point-of-care applications and real-time sensitive sensing further highlights the significance of developing novel and efficient fluorescence/colorimetric dual-mode sensing platform with high-efficiency probes.
View Article and Find Full Text PDFDeveloping highly sensitive and selective methods that incorporate specific recognition elements is crucial for detecting small molecules because of the limited availability of small molecule antibodies and the challenges in obtaining sensitive signals. In this study, a generalizable photoelectrochemical-colorimetric dual-mode sensing platform was constructed based on the synergistic effects of a molecularly imprinted polymer (MIP)-aptamer sandwich structure and nanoenzymes. The MIP functionalized peroxidase-like FeO (FeO@MIPs) and alkaline phosphatase mimic Zr-MOF labeled aptamer (Zr-mof@Apt) were used as the recognition elements.
View Article and Find Full Text PDF