Publications by authors named "Zheng Jc"

We reported a novel strategy by the combination of two-step annealing treatment and ionic-liquid gating technology for effectively regulating the properties of g-C3N4, especially largely reducing the recombination rate of the electron-hole pairs, with evidenced by the remarkable reduction of photoluminescence (PL) intensity. Firstly, graphitic carbon nitrides with typical layered structure were obtained by annealing melamine with temperature above 500°C. Further annealing at 600°C with much longer time (from 2 hours to 12 hours) were found to effectively reduce the imperfections or defects, and thus the PL intensity (49% reduction).

View Article and Find Full Text PDF

Background: MicroRNAs (miRNAs) have emerged as an essential regulator of the cell fate commitment of neural stem/progenitor cells (NPCs), although the impacts of certain miRNAs on NPCs remain vague. The aim of this study is to investigate the regulatory effects of on the cell fate commitment of NPCs.

Methods: We investigated the impact of on the proliferation and differentiation capacities of primary NPCs by manipulating the expression of using specific mimics and inhibitors.

View Article and Find Full Text PDF

Electrocatalytic hydrogen evolution reaction (HER) offers a sustainable and clean route for hydrogen production. Developing a high-efficiency HER catalyst is extremely essential toward meeting future energy needs. Herein, the Sn-doped GaO monolayer, O-defected GaO monolayer, and Ru-adsorbed GaO monolayer with high electrocatalytic performances toward HER are reported (their H adsorption free energies are 0.

View Article and Find Full Text PDF
Article Synopsis
  • Heat stress significantly affects soybean growth and production, and while brassinosteroids (BRs) are known to aid in plant responses to stresses, their specific mechanisms in soybeans under heat stress are not well understood.
  • The study focuses on two genes, GmBSK1 and GmBES1.5, and investigates their regulatory roles through methods like transgenic technology and transcriptome analysis to understand how they help soybean plants cope with heat stress.
  • Results indicate that GmBSK1 enhances the function of GmBES1.5, which increases heat resilience in soybeans, providing insights for developing heat-tolerant soybean crops through this gene regulatory network.
View Article and Find Full Text PDF

Purpose: Strong primary health care (PHC) systems require well-established PHC education systems to enhance the skills of general practitioners (GPs). However, the literature on the experiences of international collaboration in primary care education in low- and middle-income countries remains limited. The purpose of this study was to evaluate the implementation and perceived impact of the McGill-Tongji Blended Education Program for Teacher Leaders in General Practice (referred to as the "Tongji Program").

View Article and Find Full Text PDF

Phosphate deficiency and drought are significant environmental constraints that impact both the productivity and quality of wheat. The interaction between phosphorus and water facilitates their mutual absorption processes in plants. Under conditions of both phosphorus deficiency and drought stress, we observed a significant upregulation in the expression of wheat MYB-CC transcription factors through the transcriptome analysis.

View Article and Find Full Text PDF

Electronegativity and ionicity are important but difficult concepts. In this work, we present the universal scale of electronegativity by utilizing electron scattering factors. A mapping of our proposed "scattering electronegativity" with Pauling electronegativity and other electronegativity scales is given.

View Article and Find Full Text PDF

Due to persistent inflammation and oxidative stress reactions, achieving drug absorption in diabetic wounds is challenging. To overcome this problem, our article presents a composite hydrogel, GelMA-GA/DMOG@GDNP, which consists of gelatin methacryloyl (GelMA) treated with gallic acid (GA) and encapsulating ginseng-derived nanoparticles (GDNPs) loaded with dimethyloxallyl glycine (DMOG). The composite hydrogel demonstrates excellent biocompatibility.

View Article and Find Full Text PDF

The interfacial instability of the poly(ethylene oxide) (PEO)-based electrolytes impedes the long-term cycling and further application of all-solid-state lithium metal batteries. In this work, we have shown an effective additive 1-adamantanecarbonitrile, which contributes to the excellent performance of the poly(ethylene oxide)-based electrolytes. Owing to the strong interaction of the 1-Adamantanecarbonitrile to the polymer matrix and anions, the coordination of the Li-EO is weakened, and the binding effect of anions is strengthened, thereby improving the Li conductivity and the electrochemical stability.

View Article and Find Full Text PDF

Background: Preoperative pain sensitivity (PPS) can be associated with postsurgical pain. However, estimates of this association are scarce. Confirming this correlation is essential to identifying patients at high risk for severe postoperative pain and for developing analgesic strategy.

View Article and Find Full Text PDF

In response to the critical challenges of interfacial impedance and volumetric changes in LiAlTi(PO) (LATP)-based lithium metal batteries, an elastomeric lithium-conducting interlayer fabricates from fluorinated hydrogenated nitrile butadiene rubber (F-HNBR) matrix is introduced herein. Owing to the vulcanization, vapor-phase fluorination, and plasticization processes, the lithium-conducting interlayer exhibits a high elasticity of 423%, exceptional fatigue resistance (10 000 compression cycles), superior ionic conductivity of 6.3 × 10 S cm, and favorable lithiophilicity, rendering it an ideal buffer layer.

View Article and Find Full Text PDF

Age-related depletion of stem cells causes tissue degeneration and failure to tissue regeneration, driving aging at the organismal level. Previously we reported a cell-non-autonomous DAF-16/FOXO activity in antagonizing the age-related loss of germline stem/progenitor cells (GSPCs) in C. elegans, indicating that regulation of stem cell aging occurs at the organ system level.

View Article and Find Full Text PDF

Alleviating the decomposition of the electrolyte is of great significance to improving the cycle stability of cathodes, especially for LiCoO (LCO), its volumetric energy density can be effectively promoted by increasing the charge cutoff voltage to 4.6 V, thereby supporting the large-scale application of clean energy. However, the rapid decomposition of the electrolyte under 4.

View Article and Find Full Text PDF

Since NaV(PO) (NVP) possesses modest volume deformation and three-dimensional ion diffusion channels, it is a potential sodium-ion battery cathode material that has been extensively researched. Nonetheless, NVP still endures the consequences of poor electronic conductivity and low voltage platforms, which need to be further improved. On this basis, a high voltage platform NaV(PO)F was introduced to form a composite with NVP to increase the energy density.

View Article and Find Full Text PDF

Superlattices constructed with the wide-band-gap semiconductor ZnO and magnetic oxide FeO, both in the wurtzite structure, have been investigated using spin-polarized first-principles calculations. The structural, electronic and magnetic properties of the (ZnO)/(w-FeO) superlattices were studied in great detail. Two different interfaces in the (ZnO)/(w-FeO) superlattices were identified and they showed very different magnetic and electronic properties.

View Article and Find Full Text PDF

Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent gastrointestinal malignancies with high mortality worldwide. Emerging evidence indicates that long noncoding RNAs (lncRNAs) are involved in human cancers, including ESCC. However, the detailed mechanisms of lncRNAs in the regulation of ESCC progression remain incompletely understood.

View Article and Find Full Text PDF

Objective: Tranexamic acid (TXA) demonstrates therapeutic efficacy in the management of traumatic brain injury (TBI). The objective of this systematic review and meta-analysis was to evaluate the safety and effectiveness of TXA in patients with TBI.

Methods: The databases, namely PubMed, Embase, Web of Science, and Cochrane Library databases, were systematically searched to retrieve randomized controlled trials (RCTs) investigating the efficacy of TXA for TBI from January 2000 to November 2023.

View Article and Find Full Text PDF

The oncogenic role of circRNA in cancers including esophageal cancer (EC) has been well studied. However, whether and how circRNAs are involved in cancer cell metabolic processes remains largely unknown. Here, we reported that circRNA, circHIPK3, is highly expressed in ESCC cell lines and tissues.

View Article and Find Full Text PDF

Ten previously undescribed cucurbitane-type triterpenoids, namely hemslyencins A-F (1-6) and hemslyencosides A-D (7-10), together with twenty previously reported compounds (11-30), were isolated from the tubers of Hemsleya chinensis. Their structures were elucidated by unambiguous spectroscopic data (UV, IR, HR-ESI-MS, 1D and 2D NMR data). Hemslyencins A and B (1 and 2) possessing unique 9, 11-seco-ring system with a six-membered lactone moiety, were the first examples among of the cucurbitane-type triterpenoids, and hemslyencins C and D (3 and 4) and hemslyencoside D (10) are the infrequent pentacyclic cucurbitane triterpenes featuring a 6/6/6/5/6 fused system.

View Article and Find Full Text PDF

Hydrogen is identified as one of the most promising sustainable and clean energy sources. The development of a hydrogen evolution reaction (HER) catalyst with high activity is essential to meet future needs. Considering the novel advantages of two-dimensional materials and the high catalytic activity of atomic transition metals, in this study, using density functional theory calculations, the HER on a single transition metal (10 different TM atoms) adsorbed and doped ZnO monolayer (ZnO-m) has been investigated.

View Article and Find Full Text PDF

This publication has been retracted by the Editor due to the identification of non-original figure images and manuscript content that raise concerns regarding the credibility and originality of the study. Reference: Jin-Cheng Zheng, Ke-Jie Chang, Yu-Xiang Jin, Xue-Wei Zhao, Bing Li, Meng-Hang Yang. Arsenic Trioxide Inhibits the Metastasis of Small Cell Lung Cancer by Blocking Calcineurin-Nuclear Factor of Activated T Cells (NFAT) Signaling.

View Article and Find Full Text PDF

The development of Pt-based catalysts for use in fuel cells that meet performance targets of high activity, maximized stability, and low cost remains a huge challenge. Herein, we report a nitrogen (N)-doped high-entropy alloy (HEA) electrocatalyst that consists of a Pt-rich shell and a N-doped PtCoFeNiCu core on a carbon support (denoted as N-Pt/HEA/C). The N-Pt/HEA/C catalyst showed a high mass activity of 1.

View Article and Find Full Text PDF

VS has received extensive attention in the field of sodium-ion batteries (SIBs) due to its two-dimensional (2D) layered structure, and weak van der Waals forces between V-S accelerate the transport of sodium ions. However, the long-term cycling of VS still suffers from volume expansion and low conductivity. Herein, a hollow nanotube VS@C (H-VS@C) with improved conductivity was synthesized by a solvothermal method to alleviate cracking caused by volume expansion.

View Article and Find Full Text PDF

Silicon (Si) is recognized as a promising anode material for next-generation anodes due to its high capacity. However, large volume expansion and active particle pulverization during cycling rapidly deteriorate the battery performance. The relationship between Si anode particle size and particle pulverization, and the structure evolution of Si particles during cycling is not well understood.

View Article and Find Full Text PDF