Publications by authors named "Zhencai Wang"

An ultra-high fluorescence enhancement for two dyes on photonic crystal films was achieved to construct a two-color immuno-dot blot assay. This assay was demonstrated to simultaneously detect chemokine receptor co-expressed in cancer cells and reveal their co-operative and subtle changes after binding with respective ligands and drugs.

View Article and Find Full Text PDF

The relationship between the oligomeric status and functions of chemokine receptor CCR3 is still controversial. We use total internal reflection fluorescence microscopy at the single-molecule level to visualize the oligomeric status of CCR3 and its regulation of the membrane of stably transfected T-REx-293 cells. We find that the population of the dimers and oligomers of CCR3 can be modulated by the binding of ligands.

View Article and Find Full Text PDF

The role of dimerization and oligomerization of G-protein-coupled receptors in their signal transduction is highly controversial. Delineating this issue can greatly facilitate rational drug design. With single-molecule imaging, we show that chemokine receptor CXCR4 exists mainly as a monomer in normal mammalian living cells and forms dimers and higher-order oligomers at a high expression level, such as in cancer cells.

View Article and Find Full Text PDF

Fluorescence imaging requires bioselective, sensitive, nontoxic molecular probes to detect the precise location of lesions for fundamental research and clinical applications. Typical inorganic semiconductor nanomaterials with large sizes (>10 nm) can offer high-quality fluorescence imaging due to their fascinating optical properties but are limited to low selectivity as well as slow clearance pathway. We here report an N- and O-rich carbogenic small molecular complex (SMC, MW < 1000 Da) that exhibits high quantum yield (up to 80%), nucleic acid-binding enhanced excitation-dependent fluorescence (EDF), and a near-infrared (NIR) emission peaked at 850 nm with an ultralarge Stokes shift (∼500 nm).

View Article and Find Full Text PDF