Publications by authors named "ZhenWei Feng"

In this study, a hybrid amorphous strontium titanate (STO) and terahertz metasurface were studied. Because of the excellent physical properties of amorphous STO, such as its dielectric properties and high transmittance in the terahertz region, it plays a core role in realizing a novel terahertz (THz) temperature sensor with high performance in the temperature range of 500-608 K. A blue shift of the absorption peaks appeared for the THz wave as the temperature increased, which confirmed the temperature-sensing function.

View Article and Find Full Text PDF

Ferroptosis is a predominant contributor to graft kidney ischemia‒reperfusion injury (IRI), resulting in delayed graft function (DGF). However, much less is known about the early predicting biomarkers and therapeutic targets of DGF, especially aiming at ferroptosis. Here, we propose a precise predicting model for DGF, relying on the Akirin1 level in extracellular vesicles (EVs) derived from recipient urine 48 h after kidney transplant.

View Article and Find Full Text PDF

Gemcitabine resistance is one of the leading causes of bladder cancer (BCa) recurrence and progression. The dysregulation of ferroptosis is involved in this process; however, the underlying mechanisms remain unclear. In the current study, we found a prominent increase in long non-coding RNA (lncRNA) small nucleolar RNA host gene 16 (SNHG16) in tumor samples, which was related to advanced tumor grade and poor prognosis.

View Article and Find Full Text PDF

Objective: Prostate cancer (PCa) is the second disease threatening men's health, and anti-androgen therapy (AAT) is a primary approach for treating this condition. Increasing evidence suggests that long non-coding RNAs (lncRNAs) play crucial roles in the development of PCa and the process of AAT resistance. The objective of this study is to utilize bioinformatics methods to excavate lncRNAs association with AAT resistance and investigate their biological functions.

View Article and Find Full Text PDF

The incidence of acute kidney injury (AKI) due to ischemia-reperfusion (IR) injury is increasing. There is no effective treatment for AKI, and because of this clinical challenge, AKI often progresses to chronic kidney disease, which is closely associated with poor patient outcomes and high mortality rates. Small extracellular vesicles from human umbilical cord mesenchymal stem cells (hUCMSC-sEVs) play increasingly vital roles in protecting tissue function from the effects of various harmful stimuli owing to their specific biological features.

View Article and Find Full Text PDF

Bicalutamide (BIC) resistance impedes the treatment of prostate cancer (PCa) and seems to involve ferroptosis; however, the underlying mechanism remains unclear. Our study aimed to explore how miR-15b-3p modulates ferroptosis in response to BIC resistance and determine whether the miRNA is suitable for early screening of PCa. Here, we found that PCa tissues had significantly higher miR-15b-3p expression than adjacent normal tissues.

View Article and Find Full Text PDF

Ferroptosis is a predominant contributor to renal ischemia reperfusion injury (IRI) after kidney transplant, evoking delayed graft function and poorer long-term outcomes. The wide propagation of ferroptosis among cell populations in a wave-like manner, developing the "wave of ferroptosis" causes a larger area of tubular necrosis and accordingly aggravates renal allograft IRI. In this study, we decipher a whole new metabolic mechanism underlying ferroptosis and propose a novel spreading pathway of the "wave of ferroptosis" in the renal tissue microenvironment, in which renal IRI cell-secreted small extracellular vesicles (IRI-sEVs) delivering lncRNA WAC-AS1 reprogram glucose metabolism in adjacent renal tubular epithelial cell populations by inducing GFPT1 expression and increasing hexosamine biosynthesis pathway (HBP) flux, and consequently enhances O-GlcNAcylation.

View Article and Find Full Text PDF

Background: Starvation-induced tumor microenvironment significantly alters genetic profiles including long non-coding RNAs (lncRNAs), further regulating the malignant biological characteristics (invasion and migration) of clear cell renal cell carcinoma (ccRCC).

Methods: Transcriptome RNA-sequencing data of 539 ccRCC tumors and 72 normal tissues were acquired from the TCGA and paired clinical samples of 50 ccRCC patients. experiments, such as qPCR, migration and invasion assays were applied to reveal the clinical relevance of LINC-PINT, AC108449.

View Article and Find Full Text PDF

Renal ischemia-reperfusion (I/R) injury is a leading cause of acute kidney injury (AKI), with high mortality. Recent studies have reported that human umbilical cord mesenchymal stem cells (HucMSCs) play an important role in repairing organ and tissue injuries because of their unique characteristics. However, the potential of HucMSC extracellular vesicles (HucMSC-EVs) to promote the repair of renal tubular cells remains to be explored.

View Article and Find Full Text PDF

Objectives: This retrospective study aimed to describe our institutional experience with cytoreductive cystectomy (Cx) in patients with pathological T4 (pT4) bladder cancer (BCa) and to investigate the clinicopathologic factors that can predict patient survival outcomes.

Methods: We reviewed the baseline demographics, clinicopathologic features, perioperative complications, and follow-up data of 44 patients who underwent Cx for pT4 BCa at our institution between 2013 and 2021. The Kaplan-Meier curve and the log-rank test were used to analyze progression-free survival (PFS) and overall survival (OS).

View Article and Find Full Text PDF

Background: Starving intratumoral microenvironment prominently alters genic profiles including long non-coding RNAs (lncRNAs), which further regulate bladder cancer (BCa) malignant biological properties, such as invasion and migration.

Methods: Transcriptome RNA-sequencing data of 414 BCa tumor tissues and 19 normal tissues were obtained from TCGA database and paired samples of 132 BCa patients. A chain of validations such as qPCR, migration and invasion assays were performed to reveal the clinical relevance of AC011472.

View Article and Find Full Text PDF

BACKGROUND Tacrolimus may be effective in the short-term treatment of idiopathic membranous nephropathy (IMN). However, it is not clear whether an electron microscopic classification of the homogeneous and heterogeneous types of nephrotic IMN is related to the efficacy of tacrolimus in patients with IMN. This study aimed to explore this question and to provide evidence for individualized patient treatment.

View Article and Find Full Text PDF