Publications by authors named "ZhenGuo Wu"

Article Synopsis
  • * Researchers created ultra-high Ni cathodes using B and Mo to improve charging efficiency and reduce damage during battery cycles.
  • * Findings show that surface reconstruction, not cracks or nanopores, is the major cause of capacity loss, with intragranular cracks actually exposing more active material and leading to faster surface degradation.
View Article and Find Full Text PDF

Background: Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is significantly influenced by intestinal flora. Understanding the genetic and microbiotic interplay is crucial for IBD prediction and treatment.

Methods: We used Mendelian randomization (MR), transcriptomic analysis, and machine learning techniques, integrating data from the MiBioGen Consortium and various GWAS datasets.

View Article and Find Full Text PDF

An integrated system for in vivo multi-spectral imaging (MSI) and Raman spectroscopy was developed to understand the external morphology and internal molecular information of biological tissues. The achieved MSI images were reconstructed by eighteen separated images from 400 nm to 760 nm, whose illumination bands were selected with six tri-channel band filters. Based on the spectral analysis algorithms, the spatial distribution patterns of blood volume, blood oxygen content and tissue scatterer volume fraction were visualized.

View Article and Find Full Text PDF

Background: Several abdominal obesity indices including waist circumference (WC), waist-hip ratio (WHR), visceral adiposity index (VAI), lipid accumulation product (LAP), and Chinese visceral adiposity index (CVAI) were considered effective and useful predictive markers for cardiovascular disease (CVD) in general populations or diabetic populations. However, studies investigating the associations between these indices among postmenopausal women are limited. Our study aimed to investigate the associations of the five indices with incident CVD and compare the predictive performance of CVAI with other abdominal obesity indices among postmenopausal women.

View Article and Find Full Text PDF

The Li-rich Mn-based cathode materials (LMRs) deliver excellent energy density and exhibit low cost, which are considered as the most promising cathode materials for the next generation lithium-ion batteries. However, the irreversible redox reaction of the oxygen atoms directly leads to release oxygen and intensifies phase transformation. Besides, the local stress and strain will be generated due to the unit-cell volume difference between R-3m and C2/m phases, which continuously aggravates the collapse of secondary particles.

View Article and Find Full Text PDF

Single-crystal and polycrystalline structures are the two main structural forms of the Ni-rich layered cathode for lithium-ion batteries. The structural difference is closely related to the electrochemical performance and thermal stability, but its internal mechanism is unclear and is worthy of further exploration. In this study, both polycrystalline and single-crystal LiNiCoMnO cathodes were prepared by adjusting the calcination temperature and mechanical post-treatment, respectively.

View Article and Find Full Text PDF

Preoxidation is an effective strategy to inhibit the graphitization of coals during carbonization. However, the single effect of the traditional preoxidation strategy could barely increase surface-active sites, hindering further enhancement of sodium storage. Herein, a multieffect preoxidation strategy was proposed to suppress structural rearrangement and create abundant surface-active sites.

View Article and Find Full Text PDF

The aim of this study was to investigate the overall effects of phototherapy on biopterin (BH4), neopterin (BH2), tryptophan (Trp), and behavioral neuroinflammatory reaction in patients with post-stroke depression. There involved a total of 100 hospitalized patients with post-stroke depression at our hospital from February 2021 to December 2022. The participants enrolled were randomly assigned to either the control group or the experimental group.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a debilitating neurological and pathological condition that results in significant impairments in motor, sensory, and autonomic functions. By integrating multispectral imaging (MSI) with Raman spectroscopy, a label-free optical methodology was developed for achieving a non-invasive in vivo understanding on the pathological features of SCI evolution. Under the guidance of captured the spectral imaging data cube with a rigid endoscope based MSI system, a special designed fiber probe passed through the instrumental channel for acquiring the finger-print spectral information from compression rat SCI models.

View Article and Find Full Text PDF

Silicon-based anodes are becoming promising materials due to their high specific capacity. However, the intrinsically large volume change brought about by the alloying reaction results in the crushing of the active particles and destruction of the electrode structure, which severely limits its practical application. Various structured and modified silica-based anodes exhibit improved cycling stability and the demonstrated ability to mitigate their volume changes through interfacial and binder strategies.

View Article and Find Full Text PDF

We developed an automated microregistration method that enables repeated in vivo skin microscopy imaging of the same tissue microlocation and specific cells over a long period of days and weeks with unprecedented precision. Applying this method in conjunction with an in vivo multimodality multiphoton microscope, the behavior of human skin cells such as cell proliferation, melanin upward migration, blood flow dynamics, and epidermal thickness adaptation can be recorded over time, facilitating quantitative cellular dynamics analysis. We demonstrated the usefulness of this method in a skin biology study by successfully monitoring skin cellular responses for a period of two weeks following an acute exposure to ultraviolet light.

View Article and Find Full Text PDF

Background And Aims: Lung adenocarcinoma (LUAD) is the most common and aggressive cancer with a high incidence. N1-specific pseudouridine methyltransferase (EMG1), a highly conserved nucleolus protein, plays an important role in the biological development of ribosomes. However, the role of EMG1 in the progression of LUAD is still unclear.

View Article and Find Full Text PDF

Exogenous quorum sensing (QS) molecular can regulate the activity and granulation process of anaerobic sludge in anaerobic digestion process, but would be impractical as a standalone operation. Here we demonstrated that application of 1 mg L boric acid assisted in an upflow anaerobic sludge blanket (UASB) reactor recovery from volatile fatty acids (VFAs) accumulation. After VFAs accumulation, the chemical oxygen demand (COD) removal suddenly reduced from 78.

View Article and Find Full Text PDF

Sodium batteries (SBs) emerge as a potential candidate for large-scale energy storage and have become a hot topic in the past few decades. In the previous researches on electrolyte, designing electrolytes with the solvation theory has been the most promising direction is to improve the electrochemical performance of batteries through solvation theory. In general, the four essential factors for the commercial application of SBs, which are cost, low temperature performance, fast charge performance and safety.

View Article and Find Full Text PDF

Styxl2, a poorly characterized pseudophosphatase, was identified as a transcriptional target of the Jak1-Stat1 pathway during myoblast differentiation in culture. Styxl2 is specifically expressed in vertebrate striated muscles. By gene knockdown in zebrafish or genetic knockout in mice, we found that Styxl2 plays an essential role in maintaining sarcomere integrity in developing muscles.

View Article and Find Full Text PDF

Boosting the anion redox reaction opens up a possibility of further capacity enhancement on transition-metal-ion redox-only layer-structured cathodes for sodium-ion batteries. To mitigate the deteriorating impact on the internal and surface structure of the cathode caused by the inevitable increase in the operation voltage, probing a solution to promote the bulk-phase crystal structure stability and surface chemistry environment to further facilitate the electrochemical performance enhancement is a key issue. A dual modification strategy of establishing an anion redox hybrid activation trigger agent inside the crystal structure in combination with surface oxide coating is successfully developed.

View Article and Find Full Text PDF

Understanding how reaction heterogeneity impacts cathode materials during Li-ion battery (LIB) electrochemical cycling is pivotal for unraveling their electrochemical performance. Yet, experimentally verifying these reactions has proven to be a challenge. To address this, we employed scanning μ-XRD computed tomography to scrutinize Ni-rich layered LiNiCoMnO (NCM622) and Li-rich layered Li[LiNiMn]O (LLNMO).

View Article and Find Full Text PDF

Prussian blue analogues possess numerous advantages as cathode materials for sodium-ion batteries, including high energy density, low cost, sustainability, and straightforward synthesis processes, making them highly promising for practical applications. However, during the synthesis, crystal defects such as vacancies and the incorporation of crystal water can lead to issues such as diminished capacity and suboptimal cycling stability. In the current study, a Y-tube assisted coprecipitation method was used to synthesize iron-based Prussian blue analogues, and the optimized feed flow rate during synthesis contributed to the successful preparation of the material with a formula of NaFe[Fe(CN)]□·2.

View Article and Find Full Text PDF

High-temperature lithiation is one of the crucial steps for the synthesis of Li- and Mn-rich layered metal oxide (LMLO) cathodes. A profound insight of the micromorphology and crystal structure evolution during calcination helps to realize the finely controlled preparation of final cathodes, finally achieving a desired electrochemical performance. In this work, two typical precursors (hydroxide and oxalate) were selected to prepare LMLO.

View Article and Find Full Text PDF

Background: The Metabolic Score for Insulin Resistance (METS-IR) index serves as a simple surrogate marker for insulin resistance (IR) and is associated with the presence and severity of coronary artery disease (CAD). However, the prognostic significance of METS-IR in patients with premature CAD remains unclear. This study aims to investigate the prognostic value of METS-IR in premature CAD.

View Article and Find Full Text PDF

Background: There were seven novel and easily accessed insulin resistance (IR) surrogates established, including the Chinese visceral adiposity index (CVAI), the visceral adiposity index (VAI), lipid accumulation product (LAP), triglyceride glucose (TyG) index, TyG-body mass index (TyG-BMI), TyG-waist circumference (TyG-WC) and TyG-waist to height ratio (TyG-WHtR). We aimed to explore the association between the seven IR surrogates and incident coronary heart disease (CHD), and to compare their predictive powers among Chinese population.

Methods: This is a 10-year prospective cohort study conducted in China including 6393 participants without cardiovascular disease (CVD) at baseline.

View Article and Find Full Text PDF

Background: The triglyceride-glucose (TyG) index has been linked to the onset, progression, and prognosis of cardiovascular disease (CVD) in middle-aged and elderly individuals. Nevertheless, the relationship between the TyG index and impaired cardiovascular fitness (CVF) remains unexplored in non-diabetic young population.

Methods: We used data from the National Health and Nutrition Examination Survey (NHANES) study (1999-2004) to conduct a cross-sectional study of 3364 participants who completed an examination of CVF.

View Article and Find Full Text PDF

The demand for Lithium-ion batteries (LIBs) has significantly grown in the last decade due to their extensive use electric vehicles. To further advance the commercialization of LIBs for various applications, there is a pressing need to develop electrode materials with enhanced performance. The porous microsphere morphology LiNiMnO(LNMO) is considered to be an effective material with both high energy density and excellent rate performance.

View Article and Find Full Text PDF

A coherent anti-Stokes Raman scattering (CARS)-based multimodality microscopy system was developed using a single Ti:sapphire femtosecond laser source for biological imaging. It provides three complementary and co-registered imaging modalities: CARS, MPM (multiphoton microscopy), and RCM (reflectance confocal microscopy). The imaging speed is about 1 frame-per-second (fps) with a digital resolution of 1024 × 1024 pixels.

View Article and Find Full Text PDF

Li-rich cathode materials have emerged as one of the most prospective options for Li-ion batteries owing to their remarkable energy density (>900 Wh kg). However, voltage hysteresis during charge and discharge process lowers the energy conversion efficiency, which hinders their application in practical devices. Herein, the fundamental reason for voltage hysteresis through investigating the O redox behavior under different (de)lithiation states is unveiled and it is successfully addressed by formulating the local environment of O.

View Article and Find Full Text PDF