Publications by authors named "Zhen-tai Lu"

In this paper, we propose a novel intensity-based similarity measure for medical image registration. Traditional intensity-based methods are sensitive to intensity distortions, contrast agent and noise. Although residual complexity can solve this problem in certain situations, relative modification of the parameter can generate dramatically different results.

View Article and Find Full Text PDF

This paper presents a method for global feature extraction and the application of the boostmetric distance metric method for medical image retrieval. The global feature extraction method used the low frequency subband coefficient of the wavelet decomposition based on the non-tensor product coefficient for piecewise Gaussian fitting. The local features were extracted after semi-automatic segmentation of the lesion areas in the images in the database.

View Article and Find Full Text PDF

This paper presents a new 3-D image registration method based on the principal component analysis (PCA). Compared with intensity-based registration methods using the whole volume intensity information, our approach utilizes PCA to estimate the centroid and principal axis, and completes the registration by aligning the centroid and principal axis. We evaluated the effectiveness of this approach by applying it to simulated and actual brain image data (MR, CT, PET, and SPECT).

View Article and Find Full Text PDF