Publications by authors named "Zhen-dong Xiao"

Current research on long non-coding RNA (lncRNA) has predominantly focused on identifying their protein partners and genomic binding sites, leaving their RNA partners largely unknown. To address this gap, the study has developed a method called sarID (sgRNA scaffold assisted RNA-RNA interaction detection), which integrates Cas13-based RNA targeting, sgRNA engineering, and proximity RNA editing to investigate lncRNA-RNA interactomes. By applying sarID to the lncRNA NEAT1, over one thousand previously unidentified binding transcripts are discovered.

View Article and Find Full Text PDF

Background And Aims: Pseudouridine is a prevalent RNA modification and is highly present in the serum and urine of patients with HCC. However, the role of pseudouridylation and its modifiers in HCC remains unknown. We investigated the function and underlying mechanism of pseudouridine synthase 1 (PUS1) in HCC.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the role of the RNA binding protein CCDC137 in hepatocellular carcinoma (HCC), revealing that its increased expression is linked to poor patient outcomes and enhanced cancer cell growth.
  • CCDC137 promotes HCC progression by binding with specific mRNAs (FOXM1, JTV1, LASP1, and FLOT2), enhancing their protein production, and activating the AKT signaling pathway.
  • Additionally, the research uncovers a novel interaction between CCDC137 and the protein DGCR8 that influences mRNA localization, suggesting CCDC137 as a potential therapeutic target for HCC.
View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is an aggressive and fatal disease caused by a subset of cancer stem cells (CSCs). It is estimated that there are approximately 100 000 long noncoding RNAs (lncRNAs) in humans. However, the mechanisms by which lncRNAs affect tumor stemness remain poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • Proper gene expression is crucial for the development of mammalian skeletal muscle, influenced by both mRNA and long non-coding RNAs (lncRNAs).
  • The study investigates N-methyladenosine (mA) modifications in lncRNAs throughout muscle development using RNA sequencing techniques.
  • Findings show that lncRNA expression varies over time and that mA methylation levels positively correlate with these lncRNA expression levels, indicating a potential link between mA and the regulation of nearby mRNAs.
View Article and Find Full Text PDF

N-methyladenosine (mA) RNA methylation has emerged as an important factor in various biological processes by regulating gene expression. However, the dynamic profile, function and underlying molecular mechanism of mA modification during skeletal myogenesis remain elusive. Here, we report that members of the mA core methyltransferase complex, METTL3 and METTL14, are downregulated during skeletal muscle development.

View Article and Find Full Text PDF

MALAT1-associated small cytoplasmic RNA (mascRNA) is a cytoplasmic tRNA-like small RNA derived from nucleus-located long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). While MALAT1 was extensively studied and was found to function in multiple cellular processes, including tumorigenesis and tumor progression, the role of mascRNA was largely unknown. Here we show that mascRNA is upregulated in multiple cancer cell lines and hepatocellular carcinoma (HCC) clinical samples.

View Article and Find Full Text PDF

METTL3 increasing the mature miRNA levels via N6-Methyladenosine (m6A) modification of primary miRNA (pri-miRNA) transcripts has emerged as an important post-transcriptional regulation of miRNA biogenesis. Our previous studies and others have showed that muscle specific miRNAs are essential for skeletal muscle differentiation. Whether these miRNAs are also regulated by METTL3 is still unclear.

View Article and Find Full Text PDF

DNA N-methyladenine (N6-mA) was recently recognized as a new epigenetic modification in mammalian genome, and ALKBH1 was discovered as its demethylase. Knock-out mice studies revealed that ALKBH1 was indispensable for normal embryonic development. However, the function of ALKBH1 in myogenesis is largely unknown.

View Article and Find Full Text PDF

Type I interferons (IFNs) play a central role in host defense against viral infection. Multiple posttranslational modifications including ubiquitination and deubiquitination regulate the function of diverse molecules in type I IFN signaling. Many ubiquitin ligase enzymes, such as those of the TRAF and TRIM families, have been shown to participate in the production of type I IFNs and inflammatory cytokines.

View Article and Find Full Text PDF

Over the past few decades, RNA sequencing has significantly progressed, becoming a paramount approach for transcriptome profiling. The revolution from bulk RNA sequencing to single-molecular, single-cell and spatial transcriptome approaches has enabled increasingly accurate, individual cell resolution incorporated with spatial information. Cancer, a major malignant and heterogeneous lethal disease, remains an enormous challenge in medical research and clinical treatment.

View Article and Find Full Text PDF

The majority of the human genome encodes long noncoding RNA (lncRNA) genes, critical regulators of various cellular processes, which largely outnumber protein-coding genes. However, lncRNA-involved fusions have not been surveyed and characterized yet. Here, we present a systematic study of the lncRNA fusion landscape across cancer types and identify >30 000 high-confidence tumor-specific lncRNA fusions (using 8284 tumor and 6946 normal samples).

View Article and Find Full Text PDF

Cancer stem cells (CSCs) are cancer-initiating cells that are not only a source of tumorigenesis but also the cause of tumour progression, metastasis and therapy resistance. EBV-associated gastric cancer (EBVaGC) is a distinct subtype of gastric cancer with unique clinicopathological and molecular features. However, whether CSCs exist in EBVaGC, and the tumorigenic mechanism of EBV, remains unclear.

View Article and Find Full Text PDF

The roles and regulatory mechanisms of ferroptosis (a non-apoptotic form of cell death) in cancer remain unclear. The tumour suppressor BRCA1-associated protein 1 (BAP1) encodes a nuclear deubiquitinating enzyme to reduce histone 2A ubiquitination (H2Aub) on chromatin. Here, integrated transcriptomic, epigenomic and cancer genomic analyses link BAP1 to metabolism-related biological processes, and identify cystine transporter SLC7A11 as a key BAP1 target gene in human cancers.

View Article and Find Full Text PDF

The roles of long non-coding RNAs in cancer metabolism remain largely unexplored. Here we identify FILNC1 (FoxO-induced long non-coding RNA 1) as an energy stress-induced long non-coding RNA by FoxO transcription factors. FILNC1 deficiency in renal cancer cells alleviates energy stress-induced apoptosis and markedly promotes renal tumor development.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) is classically linked to metabolic homeostasis via the activation of unfolded protein response (UPR), which is instructed by multiple transcriptional regulatory cascades. BRCA1 associated protein 1 (BAP1) is a tumor suppressor with de-ubiquitinating enzyme activity and has been implicated in chromatin regulation of gene expression. Here we show that BAP1 inhibits cell death induced by unresolved metabolic stress.

View Article and Find Full Text PDF

NBR2 (neighbor of BRCA1 gene 2) is a non-protein coding gene that resides adjacent to tumor suppressor gene BRCA1, but its role in cancer biology has remained unknown. Our recent study showed that NBR2 encodes a long non-coding RNA and suppresses tumor development through regulation of adenosine monophosphate-activated protein kinase (AMPK) activation.

View Article and Find Full Text PDF

Altered cellular metabolism is an emerging hallmark of cancer. Accumulating recent evidence links long non-coding RNAs (lncRNAs), a still poorly understood class of non-coding RNAs, to cancer metabolism. Here we review the emerging findings on the functions of lncRNAs in cancer metabolism, with particular emphasis on how lncRNAs regulate glucose and glutamine metabolism in cancer cells, discuss how lncRNAs regulate various aspects of cancer metabolism through their cross-talk with other macromolecules, explore the mechanistic conceptual framework of lncRNAs in reprogramming metabolism in cancers, and highlight the challenges in this field.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) have emerged as critical regulators in various cellular processes. However, the potential involvement of lncRNAs in kinase signalling remains largely unknown. AMP-activated protein kinase (AMPK) acts as a critical sensor of cellular energy status.

View Article and Find Full Text PDF

BAF180 (also called PBRM1), a subunit of the SWI/SNF complex, plays critical roles in the regulation of chromatin remodeling and gene transcription, and is frequently mutated in several human cancers. However, the role of mammalian BAF180 in tumor suppression and tissue maintenance in vivo remains largely unknown. Here, using a conditional somatic knockout approach, we explored the cellular and organismal functions of BAF180 in mouse.

View Article and Find Full Text PDF

The Hippo pathway was discovered as a conserved tumour suppressor pathway restricting cell proliferation and apoptosis. However, the upstream signals that regulate the Hippo pathway in the context of organ size control and cancer prevention are largely unknown. Here, we report that glucose, the ubiquitous energy source used for ATP generation, regulates the Hippo pathway downstream effector YAP.

View Article and Find Full Text PDF

Coordinated assembly of the ribosome is essential for proper translational activity in eukaryotic cells. It is therefore critical to coordinate the expression of components of ribosomal programs with the cell's nutritional status. However, coordinating expression of these components is poorly understood.

View Article and Find Full Text PDF

Understanding the transcriptional regulation of microRNAs (miRNAs) is extremely important for determining the specific roles they play in signaling cascades. However, precise identification of transcription factor binding sites (TFBSs) orchestrating the expressions of miRNAs remains a challenge. By combining accessible chromatin sequences of 12 cell types released by the ENCODE Project, we found that a significant fraction (~80%) of such integrated sequences, evolutionary conserved and in regions upstream of human miRNA genes that are independently transcribed, were preserved across cell types.

View Article and Find Full Text PDF

Unlabelled: MicroRNA-122 (miR-122) is a liver-specific microRNA whose expression is specifically turned on in the mouse liver during embryogenesis, thus it is expected to be involved in liver development. However, the role of miR-122 in liver development and its potential underlying mechanism remain unclear. Here, we show that the expression of miR-122 is closely correlated with four liver-enriched transcription factors (LETFs)-hepatocyte nuclear factor (HNF) 1α, HNF3β, HNF4α, and CCAAT/enhancer-binding protein (C/EBP) α-in the livers of developing mouse embryos and in human hepatocellular carcinoma (HCC) cell lines.

View Article and Find Full Text PDF