Chem Commun (Camb)
January 2025
Layered transition metal oxide (NaTMO) cathodes are considered highly appropriate for the practical applications of sodium-ion batteries (SIBs) owing to their facile synthesis and high theoretical capacity. Generally, the phase evolution behaviors of NaTMO during solid-state reactions at high temperature closely related to their carbon footprint, prime cost, and the eventual electrochemical properties, while the thermal stability in various desodiated states associated with wide temperature fluctuations are extremely prominent to the electrochemical properties and safety of SIB devices. Therefore, in this review, the influences of sintering conditions such as pyrolysis temperature, soaking time, and cooling rates on the phase formation patterns of NaTMO are summarized.
View Article and Find Full Text PDFMaternal low protein diet around pregnancy reduces the primordial follicles in offspring ovary. Resolving cellular and molecular mechanisms associated with low protein diet is therefore urgently needed for the guidance of dietary interventions. Here, we utilized single-cell and spatial RNA-seq to create transcriptomic atlases of offspring ovaries from maternal low protein diet mice.
View Article and Find Full Text PDFIn mammalian ovary, the primordial follicle pool serves as the source of developing follicles and fertilizable ova. To maintain the normal length of female reproductive life, the primordial follicles must have adequate number and be kept in a quiescent state before menopause. However, the molecular mechanisms underlying primordial follicle survival are poorly understood.
View Article and Find Full Text PDFOocyte meiotic maturation failure and chromosome abnormality is one of the main causes of infertility, abortion, and diseases. The mono-orientation of sister chromatids during the first meiosis is important for ensuring accurate chromosome segregation in oocytes. MEIKIN is a germ cell-specific protein that can regulate the mono-orientation of sister chromatids and the protection of the centromeric cohesin complex during meiosis I.
View Article and Find Full Text PDFFangchinoline (FA) is an alkaloid derived from the traditional Chinese medicine Fangji. Numerous studies have shown that FA has a toxic effect on various cancer cells, but little is known about its toxic effects on germ cells, especially oocytes. In this study, we investigated the effects of FA on mouse oocyte maturation and its potential mechanisms.
View Article and Find Full Text PDFIn layered Li-rich materials, over stoichiometric Li forms an ordered occupation of LiTM in transition metal (TM) layer, showing a honeycomb superstructure along [001] direction. At the atomic scale, the instability of the superstructure at high voltage is the root cause of problems such as capacity/voltage decay of Li-rich materials. Here a Li-rich material with a high Li/Ni disorder is reported, these interlayer Ni atoms locate above the honeycomb superstructure and share adjacent O coordination with honeycomb TM.
View Article and Find Full Text PDFEnvironmental factors such as diet and lifestyle can influence the health of both mothers and offspring. However, its transgenerational transmission and underlying mechanisms remain largely unknown. Here, using a maternal lactation-period low-protein diet (LPD) mouse model, we show that maternal LPD during lactation causes decreased survival and stunted growth, significantly reduces ovulation and litter size, and alters the gut microbiome in the female LPD-F1 offspring.
View Article and Find Full Text PDFThe timely degradation of proteins that regulate the cell cycle is essential for oocyte maturation. Oocytes are equipped to degrade proteins via the ubiquitin-proteasome system. In meiosis, anaphase promoting complex/cyclosome (APC/C), an E3 ubiquitin-ligase, is responsible for the degradation of proteins.
View Article and Find Full Text PDFPreviously a ring finger protein 20 (RNF20) is found to be essential for meiotic recombination and mediates H2B ubiquitination during spermatogenesis. However, its role in meiotic division is still unknown. Here, it is shown that RNF20 is localized at both centromeres and spindle poles, and it is required for oocyte acentrosomal spindle organization and female fertility.
View Article and Find Full Text PDFSodium layered-oxides (NaTMO) sustain severe interfacial stability issues when subjected to battery applications. Particularly at high potential, the oxidation limits including transition metal dissolution and solid electrolyte interphase reformation are intertwined upon the cathode, resulting in poor cycle ability. Herein, by rearranging the complex and structure of the Helmholtz absorption plane adjacent to NaTMO cathodes, the mechanism of constructing stable cathode/electrolyte interphase (CEI) to push up oxidation limits is clarified.
View Article and Find Full Text PDFThe prepared PdCuB Ngs/C catalysts exhibited outstanding catalytic activity and stability in the formic acid oxidation reaction (FAOR). The improvement in electrocatalytic performance is due to the introduction of Cu and B atoms and the hollow nanocage structure, which changes the electronic structures of Pd, increases the reactive sites, and accelerates the reaction mass transfer rates.
View Article and Find Full Text PDFBackground: RNA splicing plays significant roles in fundamental biological activities. However, our knowledge about the roles of alternative splicing and underlying mechanisms during spermatogenesis is limited.
Results: Here, we report that Serine/arginine-rich splicing factor 2 (SRSF2), also known as SC35, plays critical roles in alternative splicing and male reproduction.
Alternative splicing (AS) plays significant roles in a multitude of fundamental biological activities. AS is prevalent in the testis, but the regulations of AS in spermatogenesis is only little explored. Here, we report that Serine/arginine-rich splicing factor 1 (SRSF1) plays critical roles in alternative splicing and male reproduction.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2024
Transition metal chalcogenides (TMCs) have demonstrated great potential in energy storage devices due to their versatile structures and composite functionalities. However, the application of TMCs in potassium-ion batteries (PIBs) suffers from the issues of large volume expansion, polysulfide dissolution, and sluggish kinetics. To overcome these challenges, this work develops nano-flower-like MnS-CoS confined in poly-pyrrole (PPY) carbon nanotube (denoted as MS-CS-PPY) as an excellent anode in PIBs.
View Article and Find Full Text PDFThe zona pellucida (ZP) is an extracellular glycoprotein matrix surrounding mammalian oocytes. Recently, numerous mutations in genes encoding ZP proteins have been shown to be possibly related to oocyte abnormality and female infertility; few reports have confirmed the functions of these mutations in living animal models. Here, we identified a novel heterozygous missense mutation (NM_001376231.
View Article and Find Full Text PDFSperm-induced Ca rise is critical for driving oocyte activation and subsequent embryonic development, but little is known about how lasting Ca oscillations are regulated. Here it is shown that NLRP14, a maternal effect factor, is essential for keeping Ca oscillations and early embryonic development. Few embryos lacking maternal NLRP14 can develop beyond the 2-cell stage.
View Article and Find Full Text PDFAccurate chromosome segregation, monitored by the spindle assembly checkpoint (SAC), is crucial for the production of euploid cells. Previous in vitro studies by us and others showed that Mad2, a core member of the SAC, performs a checkpoint function in oocyte meiosis. Here, through an oocyte-specific knockout approach in mouse, we reconfirmed that Mad2-deficient oocytes exhibit an accelerated metaphase-to-anaphase transition caused by premature degradation of securin and cyclin B1 and subsequent activation of separase in meiosis I.
View Article and Find Full Text PDFFe-N-C catalyst for oxygen reduction reaction (ORR) has been considered as the most promising nonprecious metal catalyst due to its comparable catalytic performance to Pt in proton exchange membrane fuel cells (PEMFCs). The active centers of Fe-pyrrolic N have been proven to be extremely active for ORR. However, forming a stable Fe-pyrrolic N structure is a huge challenge.
View Article and Find Full Text PDFIn overcoming the Li desolvation barrier for low-temperature battery operation, a weakly-solvated electrolyte based on carboxylate solvent has shown promises. In case of an organic-anion-enriched primary solvation sheath (PSS), we found that the electrolyte tends to form a highly swollen, unstable solid electrolyte interphase (SEI) that shows a high permeability to the electrolyte components, accounting for quickly declined electrochemical performance of graphite-based anode. Here we proposed a facile strategy to tune the swelling property of SEI by introducing an inorganic anion switch into the PSS, via LiDFP co-solute method.
View Article and Find Full Text PDFPlatinum group metal (PGM)-free catalysts represented by nitrogen and iron co-doped carbon (Fe-N-C) catalysts are desirable and critical for metal-air batteries, but challenges still exist in performance and stability. Here, cerium oxides (CeO) are incorporated into a two-dimensional Fe-N-C catalyst (FeNC-Ce-950) via a host-guest strategy. The Ce/Ce redox system creates a large number of oxygen vacancies for rapid O adsorption to accelerate the kinetics of oxygen reduction reaction (ORR).
View Article and Find Full Text PDFAtomically dispersed metal-nitrogen-carbon catalysts (M-N-C) have been widely used in the field of energy conversion, which has already attracted a huge amount of attention. Due to their unsaturated d-band electronic structure of the center atoms, M-N-C catalysts can be applied in different electrocatalytic reactions by adjusting their own microscopic electronic structures to achieve the optimization of the structure-activity relationship. Consequently, it is of great significance for the revelation of electrocatalytic mechanism and structure-activity relationship of M-N-C catalysts.
View Article and Find Full Text PDF