Publications by authors named "Zhen-Yu J Sun"

Article Synopsis
  • - CEACAM1 is a crucial membrane protein involved in various immune and non-immune functions, acting as both a homophilic and heterophilic ligand with host proteins like CEACAM5 and TIM-3.
  • - The protein is targeted by several pathogens to help them invade hosts and evade the immune system, linking it to issues like infectious diseases, autoimmunity, and cancer.
  • - The review details the structural interactions of CEACAM1, examining its different states (monomeric, dimeric, oligomeric) and their implications for signaling and function, including the impact of avidity on its activity.
View Article and Find Full Text PDF

The transcription factor BCL11A is a critical regulator of the switch from fetal hemoglobin (HbF: αγ) to adult hemoglobin (HbA: αβ) during development. BCL11A binds at a cognate recognition site (TGACCA) in the γ-globin gene promoter and represses its expression. DNA-binding is mediated by a triple zinc finger domain, designated ZnF456.

View Article and Find Full Text PDF

The current standard method for amino acid signal identification in protein NMR spectra is sequential assignment using triple-resonance experiments. Good software and elaborate heuristics exist, but the process remains laboriously manual. Machine learning does help, but its training databases need millions of samples that cover all relevant physics and every kind of instrumental artifact.

View Article and Find Full Text PDF

The transcription factor BCL11A is a critical regulator of the switch from fetal hemoglobin (HbF: α γ ) to adult hemoglobin (HbA: α β ) during development. BCL11A binds at a cognate recognition site (TGACCA) in the γ-globin gene promoter and represses its expression. DNA-binding is mediated by a triple zinc finger domain, designated ZnF456.

View Article and Find Full Text PDF

The human (h) CEACAM1 GFCC' face serves as a binding site for homophilic and heterophilic interactions with various microbial and host ligands. hCEACAM1 has also been observed to form oligomers and micro-clusters on the cell surface which are thought to regulate hCEACAM1-mediated signaling. However, the structural basis for hCEACAM1 higher-order oligomerization is currently unknown.

View Article and Find Full Text PDF

The Toll/interleukin-1 receptor (TIR) domain is a key component of immune receptors that identify pathogen invasion in bacteria, plants and animals. In the bacterial antiphage system Thoeris, as well as in plants, recognition of infection stimulates TIR domains to produce an immune signalling molecule whose molecular structure remains elusive. This molecule binds and activates the Thoeris immune effector, which then executes the immune function.

View Article and Find Full Text PDF

Human (h) carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) function depends upon IgV-mediated homodimerization or heterodimerization with host ligands, including hCEACAM5, hTIM-3, PD-1, and a variety of microbial pathogens. However, there is little structural information available on how hCEACAM1 transitions between monomeric and dimeric states which in the latter case is critical for initiating hCEACAM1 activities. We therefore mutated residues within the hCEACAM1 IgV GFCC' face including V39, I91, N97, and E99 and examined hCEACAM1 IgV monomer-homodimer exchange using differential scanning fluorimetry, multi-angle light scattering, X-ray crystallography and/or nuclear magnetic resonance.

View Article and Find Full Text PDF

G-protein-coupled receptors (GPCRs) are the largest superfamily of transmembrane proteins and the targets of over 30% of currently marketed pharmaceuticals. Although several structures have been solved for GPCR-G protein complexes, few are in a lipid membrane environment. Here, we report cryo-EM structures of complexes of neurotensin, neurotensin receptor 1 and Gαβγ in two conformational states, resolved to resolutions of 4.

View Article and Find Full Text PDF

Cancer therapies kill tumors either directly or indirectly by evoking immune responses and have been combined with varying levels of success. Here, we describe a paradigm to control cancer growth that is based on both direct tumor killing and the triggering of protective immunity. Genetic ablation of serine protease inhibitor SerpinB9 (Sb9) results in the death of tumor cells in a granzyme B (GrB)-dependent manner.

View Article and Find Full Text PDF
Article Synopsis
  • The MPER of HIV-1 gp41 is a promising target for vaccines aimed at generating broadly neutralizing antibodies (bNAbs), but the structural organization of MPER in its native form is not well understood.
  • The study utilized a modified version of MPER combined with the adjacent transmembrane domain (MPER-TMD) to investigate its structural arrangement, revealing that its insertion into membranes is influenced by both TMD sequence and surrounding residues.
  • Findings showed that the MPER-TMD predominantly forms monomers and dimers rather than stable trimers, contradicting previous assumptions and suggesting a dynamic behavior that allows adaptation during the viral fusion process.
View Article and Find Full Text PDF

A substantial fraction of eukaryotic proteins is folded and modified in the endoplasmic reticulum (ER) prior to export and secretion. Proteins that enter the ER but fail to fold correctly must be degraded, mostly in a process termed ER-associated degradation (ERAD). Both protein folding in the ER and ERAD are essential for proper immune function.

View Article and Find Full Text PDF

A 29-residue peptide (MP01), identified by in vitro selection for reactivity with a small molecule perfluoroaromatic, was modified and characterized using experimental and computational techniques, with the goal of understanding the molecular basis of its reactivity. These studies identified a six-amino acid point mutant (MP01-Gen4) that exhibited a reaction rate constant of 25.8 ± 1.

View Article and Find Full Text PDF

T-cell immunoglobulin and mucin domain containing protein-3 (TIM-3) is an important immune regulator. Here, we describe a novel high resolution (1.7 Å) crystal structure of the human (h)TIM-3 N-terminal variable immunoglobulin (IgV) domain with bound calcium (Ca) that was confirmed by nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

We engineered covalently circularized nanodiscs (cNDs) which, compared with standard nanodiscs, exhibit enhanced stability, defined diameter sizes and tunable shapes. Reconstitution into cNDs enhanced the quality of nuclear magnetic resonance spectra for both VDAC-1, a β-barrel membrane protein, and the G-protein-coupled receptor NTR1, an α-helical membrane protein. In addition, we used cNDs to visualize how simple, nonenveloped viruses translocate their genomes across membranes to initiate infection.

View Article and Find Full Text PDF

Zinc binding domains are common and versatile protein structural motifs that mediate diverse cellular functions. Among the many structurally distinct families of zinc finger (ZnF) proteins, the AN1 domain remains poorly characterized. Cuz1 is one of two AN1 ZnF proteins in the yeast S.

View Article and Find Full Text PDF

Unlabelled: An effective preventive vaccine is highly sought after in order to stem the current HIV-1 pandemic. Both conservation of contiguous gp41 membrane-proximal external region (MPER) amino acid sequences across HIV-1 clades and the ability of anti-MPER broadly neutralizing antibodies (BNAbs) to block viral hemifusion/fusion establish the MPER as a prime vaccination target. In earlier studies, we described the development of an MPER vaccine formulation that takes advantage of liposomes to array the MPER on a lipid bilayer surface, paralleling its native configuration on the virus membrane while also incorporating molecular adjuvant and CD4 T cell epitope cargo.

View Article and Find Full Text PDF

Calcineurin (Cn) is a serine/threonine phosphatase that plays pivotal roles in many physiological processes. In T cell, Cn targets the nuclear factors of activated T-cell (NFATs), transcription factors that activate cytokine genes. Elevated intracellular calclium concentration activates Cn to dephosphorylate multiple serine residues within the NFAT regulatory domain, which triggers joint nuclear translocation of NFAT and Cn.

View Article and Find Full Text PDF

HIV-1 (human immunodeficiency virus type 1) uses its trimeric gp160 envelope (Env) protein consisting of non-covalently associated gp120 and gp41 subunits to mediate entry into human T lymphocytes. A facile virus fusion mechanism compensates for the sparse Env copy number observed on viral particles and includes a 22-amino-acid, lentivirus-specific adaptation at the gp41 base (amino acid residues 662-683), termed the membrane proximal external region (MPER). We show by NMR and EPR that the MPER consists of a structurally conserved pair of viral lipid-immersed helices separated by a hinge with tandem joints that can be locked by capping residues between helices.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how structural characteristics of the HIV-1 glycoprotein's MPER region affect its immunogenicity, rather than just antigenicity, which has been more extensively studied.
  • By anchoring MPER to liposomes using different methods, researchers found that maintaining its structure while altering its positioning influenced the immune response significantly.
  • Key findings suggest that certain modifications, particularly exposure of specific amino acids, can enhance or change the body's antibody response, offering insights for designing better vaccines to target B cell responses effectively.
View Article and Find Full Text PDF

Mechanotransduction is a basis for receptor signaling in many biological systems. Recent data based upon optical tweezer experiments suggest that the TCR is an anisotropic mechanosensor, converting mechanical energy into biochemical signals upon specific peptide-MHC complex (pMHC) ligation. Tangential force applied along the pseudo-twofold symmetry axis of the TCR complex post-ligation results in the αβ heterodimer exerting torque on the CD3 heterodimers as a consequence of molecular movement at the T cell-APC interface.

View Article and Find Full Text PDF

Broadly neutralizing antibodies such as 2F5 are directed against the membrane-proximal external region (MPER) of HIV-1 GP41 and recognize well-defined linear core sequences. These epitopes can be engrafted onto protein scaffolds to serve as immunogens with high structural fidelity. Although antibodies that bind to this core GP41 epitope can be elicited, they lack neutralizing activity.

View Article and Find Full Text PDF

The human Mediator coactivator complex interacts with many transcriptional activators and facilitates recruitment of RNA polymerase II to promote target gene transcription. The MED25 subunit is a critical target of the potent herpes simplex 1 viral transcriptional activator VP16. Here we determine the solution structure of the MED25 VP16-binding domain (VBD) and define its binding site for the N-terminal portion of the VP16 transactivation domain (TADn).

View Article and Find Full Text PDF

The alphabeta TCR has recently been suggested to function as an anisotropic mechanosensor during immune surveillance, converting mechanical energy into a biochemical signal upon specific peptide/MHC ligation of the alphabeta clonotype. The heterodimeric CD3epsilongamma and CD3epsilondelta subunits, each composed of two Ig-like ectodomains, form unique side-to-side hydrophobic interfaces involving their paired G-strands, rigid connectors to their respective transmembrane segments. Those dimers are laterally disposed relative to the alphabeta heterodimer within the TCR complex.

View Article and Find Full Text PDF

Heteronuclear direct-detection experiments, which utilize the slower relaxation properties of low gamma nuclei, such as (13)C have recently been proposed for sequence-specific assignment and structural analyses of large, unstructured, and/or paramagnetic proteins. Here we present two novel (15)N direct-detection experiments. The CAN experiment sequentially connects amide (15)N resonances using (13)C(alpha) chemical shift matching, and the CON experiment connects the preceding (13)C' nuclei.

View Article and Find Full Text PDF

Nck is a functionally versatile multidomain adaptor protein consisting of one SH2 and three SH3 domains. In most cases, the SH2 domain mediates binding to tyrosine-phosphorylated receptors or cytosolic proteins, which leads to the formation of larger protein complexes via the SH3 domains. Nck plays a pivotal role in T-cell receptor-mediated reorganization of the actin cytoskeleton as well as in the formation of the immunological synapses.

View Article and Find Full Text PDF