Spectrochim Acta A Mol Biomol Spectrosc
December 2024
A novel fluorimetric ratiometric probe of green and eco-friendily nitrogen-enriched, oxygen-doped carbon nanodots (Cnanodots) was prepared for the quantitative analysis of mercury(II) (Hg) and nitrofurantoin (Nit) in the environmental sewage. The Cnanodots exhibits dual-emission peaks respectively at 345 and 445 nm under 285 nm excitation, with excitation-independent properties. Unexpectedly, this Cnanodots displays two obvious ratiometric responses to Hg and Nit through decreasing the signal at 345 nm and remaining invariable at 445 nm.
View Article and Find Full Text PDFA fluorometric method based on boron, bromide-codoped carbon dots (BBCNs) was developed for the first time for the highly selective detection of -nitroaniline (PNA) in wastewater samples. It should be noted that the introduction of bromine greatly increases the molecular polarizability of the probe, which can regulate the energy level matching between the probe and PNA, resulting in the interaction between BBCNs and PNA. In the presence of PNA, the fluorescence of BBCNs is obviously quenched and accompanied by a red shift of the fluorescence band, which might be attributed to the formation of aggregates caused by the polar adsorption of BBCNs and PNA.
View Article and Find Full Text PDFMolecular ferroelectrics are attracting tremendous interest because of their easy and environmentally friendly processing, light weight, low acoustical impedance, and mechanical flexibility, which are viable alternatives or supplements to conventional ceramic ferroelectrics. However, reports of ceramic-like molecular ferroelectrics that can be applied in the polycrystalline form have been scarce. Here, according to the "quasi-spherical theory", we successfully synthesized a ceramic-like molecular ferroelectric with an 3F2 type phase transition at 357 K, 1,5-diazabicyclo[3.
View Article and Find Full Text PDF