Publications by authors named "Zhen-Qiang Pan"

Article Synopsis
  • Inflammatory bowel disease (IBD) poses a significant health risk, including an increased chance of developing colorectal cancer (CRC), but understanding and treatment options are still limited.
  • This study identifies FBXO22, a protein that helps regulate cellular processes, as a key player in inhibiting inflammation and CRC by promoting the degradation of a specific form of mTOR, which is involved in cancer signaling.
  • Treatment with the mTOR inhibitor rapamycin shows promise in reducing colorectal inflammation and cancer effects, highlighting the potential role of FBXO22 and mTOR pathways in colorectal disease management.
View Article and Find Full Text PDF

Ubiquitination often generates lysine 48-linked polyubiquitin chains that signal proteolytic destruction of the protein target. A significant subset of ubiquitination proceeds by a priming/extending mechanism, in which a substrate is first monoubiquitinated with a priming E2-conjugating enzyme or a set of E3 ARIH/E2 enzymes specific for priming. This is then followed by ubiquitin (Ub) chain extension catalyzed by an E2 enzyme capable of elongation.

View Article and Find Full Text PDF

Cullin (CUL)-RING (Really Interesting New Gene) E3 ubiquitin (Ub) ligases (CRLs) are the largest E3 family. The E3 CRL core ligase is a subcomplex formed by the CUL C-terminal domain bound with the ROC1/RBX1 RING finger protein, which acts as a hub that mediates and organizes multiple interactions with E2, Ub, Nedd8, and the ARIH family protein, thereby resulting in Ub transfer to the E3-bound substrate. This report describes the modulation of CRL-dependent ubiquitination by small molecule compounds including KH-4-43, #33, and suramin, which target the CRL core ligases.

View Article and Find Full Text PDF

Multiple sclerosis, and its murine model experimental autoimmune encephalomyelitis (EAE), is a neurodegenerative autoimmune disease of the CNS characterized by T cell influx and demyelination. Similar to other autoimmune diseases, therapies can alleviate symptoms but often come with side effects, necessitating the exploration of new treatments. We recently demonstrated that the Cullin-RING E3 ubiquitin ligase 4b (CRL4b) aided in maintaining genome stability in proliferating T cells.

View Article and Find Full Text PDF

Cullin-RING E3 ubiquitin ligase 4 (CRL4) plays an essential role in cell cycle progression. Recent efforts using high throughput screening and follow up hit-to-lead studies have led to identification of small molecules and that inhibit E3 CRL4's core ligase complex and exhibit anticancer potential. This review provides: 1) an updated perspective of E3 CRL4, including structural organization, major substrate targets and role in cancer; 2) a discussion of the challenges and strategies for finding the CRL inhibitor; and 3) a summary of the properties of the identified CRL4 inhibitors as well as a perspective on their potential utility to probe CRL4 biology and act as therapeutic agents.

View Article and Find Full Text PDF

Posttranslational modification of protein by lysine-48 (K48) linked ubiquitin (Ub) chains is the major cellular mechanism for selective protein degradation that critically impacts biological processes such as cell cycle checkpoints. In this chapter, we describe an in vitro biochemical approach to detect a K48-linked di-Ub chain by fluorescence resonance energy transfer (FRET). To this end, we detail methods for the preparation of the relevant enzymes and substrates, as well as for the execution of the reaction with high efficiency.

View Article and Find Full Text PDF

Cullin-RING (really intersting new gene) E3 ubiquitin ligases (CRLs) are the largest E3 family and direct numerous protein substrates for proteasomal degradation, thereby impacting a myriad of physiological and pathological processes including cancer. To date, there are no reported small-molecule inhibitors of the catalytic activity of CRLs. Here, we describe high-throughput screening and medicinal chemistry optimization efforts that led to the identification of two compounds, 33-11 and KH-4-43, which inhibit E3 CRL4 and exhibit antitumor potential.

View Article and Find Full Text PDF

Post-translational modification of protein by ubiquitin (Ub) alters the stability, subcellular location, or function of the target protein, thereby impacting numerous biological processes and directly contributing to myriad cellular defects or disease states, such as cancer. Tracking substrate ubiquitination by fluorescence provides opportunities for advanced reaction dynamics studies and for translational research including drug discovery. However, fluorescence-based techniques in ubiquitination studies remain underexplored at least partly because of challenges associated with Ub chain complexity and requirement for additional substrate modification.

View Article and Find Full Text PDF

Enhancer of zeste homolog 2 (EZH2), a key histone methyltransferase and EMT inducer, is overexpressed in diverse carcinomas, including breast cancer. However, the molecular mechanisms of EZH2 dysregulation in cancers are still largely unknown. Here, we discover that EZH2 is asymmetrically dimethylated at R342 (meR342-EZH2) by PRMT1.

View Article and Find Full Text PDF

Cullin-RING E3 ligase (CRL) is the largest family of E3 ubiquitin ligase, responsible for ubiquitylation of ∼20% of cellular proteins. CRL plays an important role in many biological processes, particularly in cancers due to abnormal activation. CRL activation requires neddylation, an enzymatic cascade transferring small ubiquitin-like protein NEDD8 to a conserved lysine residue on cullin proteins.

View Article and Find Full Text PDF

The COP9 signalosome (CSN) is an evolutionarily conserved multisubunit protein complex, which controls protein degradation through deneddylation and inactivation of cullin-RING ubiquitin E3 ligases (CRLs). Recently, the CSN complex has been linked to the NF-κB signaling pathway due to its association with the IKK complex. However, how the CSN complex is regulated in this signaling pathway remains unclear.

View Article and Find Full Text PDF

CRL7 is an E3 ubiquitin ligase complex, containing cullin7 (CUL7) as a scaffold, the F-box protein Fbxw8 as a substrate receptor, the Skp1 adaptor, and the ROC1/Rbx1 RING finger protein for working with E2 enzyme to facilitate ubiquitin transfer. This chapter provides an update on studies linking CRL7 to hereditary human growth retardation disease, as at least 64 cul7 germ line mutations were found in patients with autosomal recessive 3-M syndrome. CRL7 interacts with two additional 3-M associated proteins OBSL1 and CCDC8, leading to subcellular localization of the E3 complex to regions including plasma membrane, centrosome, and Golgi.

View Article and Find Full Text PDF

Human homolog of mouse double minute 2 (HDM2) is an oncogene frequently overexpressed in cancers with poor prognosis, but mechanisms of controlling its abundance remain elusive. In an unbiased biochemical search, we discovered kp1-ullin 1-BXO22-ROC1 (SCF) as the most dominating HDM2 E3 ubiquitin ligase from human proteome. The results of protein decay rate analysis, ubiquitination, siRNA-mediated silencing, and coimmunoprecipitation experiments support a hypothesis that FBXO22 targets cellular HDM2 for ubiquitin-dependent degradation.

View Article and Find Full Text PDF

The LOW-density lipoprotein related protein 6 (LRP6) receptor is an important effector of canonical Wnt signaling, a developmental pathway, whose dysregulation has been implicated in various diseases including cancer. The membrane proximal low-density lipoprotein (LDL) receptor repeats in LRP6 exhibit homology to ligand binding repeats in the LDL receptor (LDLR), but lack known function. We generated single amino acid substitutions of LRP6-LDLR repeat residues, which are highly conserved in the human LDLR and mutated in patients with Familial Hypercholesteremia (FH).

View Article and Find Full Text PDF

Cullin-RING E3 ubiquitin ligases (CRL) control a myriad of biological processes by directing numerous protein substrates for proteasomal degradation. Key to CRL activity is the recruitment of the E2 ubiquitin-conjugating enzyme Cdc34 through electrostatic interactions between E3's cullin conserved basic canyon and the acidic C terminus of the E2 enzyme. This report demonstrates that a small-molecule compound, suramin, can inhibit CRL activity by disrupting its ability to recruit Cdc34.

View Article and Find Full Text PDF

PIN2/TRF1-interacting telomerase inhibitor 1 (PinX1) is a novel cloned gene which has been identified as a major haploinsufficient tumor suppressor essential for maintaining telomerase activity, the length of telomerase and chromosome stability. This study explored the clinical significance and biological function of PinX1 in human clear cell renal cell carcinoma (ccRCC). The clinical relevance of PinX1 in ccRCC was evaluated using tissue microarray and immunohistochemical staining in two independent human ccRCC cohorts.

View Article and Find Full Text PDF

CHIP (c-terminal Hsp70-interacting protein) is an E3 ligase which may play different roles in different cancers. The elucidation of the VHL-HIF-1α (hypoxia inducible factor-1α)-VEGF (vascular endothelial growth factor) pathway has led to the development of targeted therapy in renal cell carcinoma (RCC). However, little is known about the role of CHIP and the relationship between CHIP and VEGF-VEGFR2 (VEGF receptor 2) pathway in RCC.

View Article and Find Full Text PDF

A key regulatory node in NF-κB signaling is the removal of the IκBα inhibitor, whose levels are tightly controlled by the ubiquitin-proteasome system. In response to signal activation and transmission, ubiquitin E1, E2, and E3 enzymes are employed to generate a lysine 48-linked ubiquitin chain that triggers degradation of IκBα by the proteasome. In this chapter we describe an in vitro biochemical approach to reconstitute the ubiquitination system.

View Article and Find Full Text PDF

Lysine 48 (K48)-polyubiquitination is the predominant mechanism for mediating selective protein degradation, but the underlying molecular basis of selecting ubiquitin (Ub) K48 for linkage-specific chain synthesis remains elusive. Here, we present biochemical, structural, and cell-based evidence demonstrating a pivotal role for the Ub Y59-E51 loop in supporting K48-polyubiquitination. This loop is established by a hydrogen bond between Ub Y59's hydroxyl group and the backbone amide of Ub E51, as substantiated by NMR spectroscopic analysis.

View Article and Find Full Text PDF

Simian virus 40 (SV40) large tumor antigen (LT) triggers oncogenic transformation by inhibition of key tumor suppressor proteins, including p53 and members of the retinoblastoma family. In addition, SV40 transformation requires binding of LT to Cullin 7 (CUL7), a core component of Cullin-RING E3 ubiquitin ligase 7 (CRL7). However, the pathomechanistic effects of LT-CUL7 interaction are mostly unknown.

View Article and Find Full Text PDF

We have explored the mechanisms of polyubiquitin chain assembly with reconstituted ubiquitination of IκBα and β-catenin by the Skp1-cullin 1-βTrCP F-box protein (SCF(βTrCP)) E3 ubiquitin (Ub) ligase complex. Competition experiments revealed that SCF(βTrCP) formed a complex with IκBα and that the Nedd8 modified E3-substrate platform engaged in dynamic interactions with the Cdc34 E2 Ub conjugating enzyme for chain elongation. Using "elongation intermediates" containing β-catenin linked with Ub chains of defined length, it was observed that a Lys-48-Ub chain of a length greater than four, but not its Lys-63 linkage counterparts, slowed the rate of additional Ub conjugation.

View Article and Find Full Text PDF

Dysfunctional regulation of signaling pathways downstream of the insulin receptor plays a pivotal role in the pathogenesis of insulin resistance and type 2 diabetes. In this study we report both in vitro and in vivo experimental evidence for a role of Cullin-RING E3 ubiquitin ligase 7 (CRL7) in the regulation of insulin signaling and glucose homeostasis. We show that Cul7(-/-) mouse embryonic fibroblasts displayed enhanced AKT and Erk MAP kinase phosphorylation upon insulin stimulation.

View Article and Find Full Text PDF

Background: Negative feedback regulation of insulin signaling involves ubiquitin-dependent degradation of insulin receptor substrate 1 (IRS1).

Results: Cullin-RING E3 ubiquitin ligase 7 (CRL7) mediates the ubiquitination of IRS1 in hyperphosphorylated form.

Conclusion: Multisite IRS1 phosphorylation triggers interactions with CRL7 for ubiquitin modification.

View Article and Find Full Text PDF

Expression of the hominoid-specific TBC1D3 oncoprotein enhances growth factor receptor signaling and subsequently promotes cellular proliferation and survival. Here we report that TBC1D3 is degraded in response to growth factor signaling, suggesting that TBC1D3 expression is regulated by a growth factor-driven negative feedback loop. To gain a better understanding of how TBC1D3 is regulated, we studied the effects of growth factor receptor signaling on TBC1D3 post-translational processing and turnover.

View Article and Find Full Text PDF

RING E3 ligases are proteins that must selectively recruit an E2-conjugating enzyme and facilitate ubiquitin transfer to a substrate. It is not clear how a RING E3 ligase differentiates a naked E2 enzyme from the E2∼ubiquitin-conjugated form or how this is altered upon ubiquitin transfer. RING-box protein 1 (Rbx1/ROC1) is a key protein found in the Skp1/Cullin-1/F-box (SCF) E3 ubiquitin ligase complex that functions with the E2 ubiquitin conjugating enzyme CDC34.

View Article and Find Full Text PDF