World J Gastrointest Oncol
November 2024
Background: Colorectal cancer (CRC) is a considerable global health issue. Dioscin, a compound found in several medicinal plants, has shown potential anticancer effects.
Aim: To find the relationship between CRC cells (HCT116) and diosgenin and clarified their mechanisms of action.
The advancement in electrocatalysis, particularly in the development of efficient catalysts for hydrogen and oxygen evolution reactions (HER and OER), is crucial for sustainable energy generation through processes like overall water splitting. A notable bifunctional electrocatalyst, CoFeO/CoFe, has been engineered to facilitate both OER and HER concurrently, aiming to reduce overpotentials. In the pursuit of further enhancing catalytic efficiency, a morphological transformation has been achieved by introducing a sulphur source and multi-walled carbon nanotubes (MWCNTs) into the catalyst system, resulting in S-CoFeO/CoFe/MWCNTs.
View Article and Find Full Text PDFTriggering the lattice oxygen oxidation mechanism is crucial for improving oxygen evolution reaction (OER) performance, because it could bypass the scaling relation limitation associated with the conventional adsorbate evolution mechanism through the direct formation of oxygen-oxygen bond. High-valence transition metal sites are favorable for activating the lattice oxygen, but the deep oxidation of pre-catalysts suffers from a high thermodynamic barrier. Here, taking advantage of the Jahn-Teller (J-T) distortion induced structural instability, we incorporate high-spin Mn ( ) dopant into CoN.
View Article and Find Full Text PDFSingle-site Fe-N-C catalysts are the most promising Pt-group catalyst alternatives for the oxygen reduction reaction, but their application is impeded by their relatively low activity and unsatisfactory stability as well as production costs. Here, cobalt atoms are introduced into an Fe-N-C catalyst to enhance its catalytic activity by utilizing the synergistic effect between Fe and Co atoms. Meanwhile, phenanthroline is employed as the ligand, which favours stable pyridinic N-coordinated Fe-Co sites.
View Article and Find Full Text PDFDual-atom site catalysts (DASCs) have sparked considerable interest in heterogeneous photocatalysis as they possess the advantages of excellent photoelectronic activity, photostability, and high carrier separation efficiency and mobility. The DASCs involved in these important photocatalytic processes, especially in the photocatalytic hydrogen evolution reaction (HER), CO reduction reaction (CORR), N/nitrate reduction, ., have been extensively investigated in the past few years.
View Article and Find Full Text PDFAmbient electrocatalytic nitrogen (N) reduction has gained significant recognition as a potential substitute for producing ammonia (NH). However, N adsorption and *NN protonation for N activation reaction with the competing hydrogen evolution reaction remain a daunting challenge. Herein, a defect-rich TiO nanosheet electrocatalyst with PdCu alloy nanoparticles (PdCu/TiO) is designed to elucidate the reactivity and selectivity trends of N cleavage path for N-to-NH catalytic conversion.
View Article and Find Full Text PDFThe development of highly active and low-cost oxygen reduction reaction (ORR) catalysts is crucial for the practical application of hydrogen fuel cells. However, the linear scaling relation (LSR) imposes an inherent Sabatier's limitation for most catalysts including the benchmark Pt with an insurmountable overpotential ceiling, impeding the development of efficient electrocatalysts. To avoid such a limitation, using earth-abundant metal oxides with different crystal phases as model materials, we propose an effective and dynamic reaction pathway through constructing spatially correlated Pt-Mn pair sites, achieving an excellent balance between high activity and low Pt loading.
View Article and Find Full Text PDFThe development of efficient and economical electrocatalysts for oxygen evolution reaction (OER) is of paramount importance for the sustainable production of renewable fuels and energy storage systems; however, the sluggish OER kinetics involving multistep four proton-coupled electron transfer hampers progress in these systems. Fortunately, surface reconstruction offers promising potential to improve OER catalyst design. Anion modulation plays a crucial role in controlling the extent of surface reconstruction and positively persuading the reconstructed species' performances.
View Article and Find Full Text PDFThe spin degree of freedom is an important and intrinsic parameter in boosting carrier dynamics and surface reaction kinetics of photocatalysis. Here we show that chiral structure in ZnO can induce spin selectivity effect to promote photocatalytic performance. The ZnO crystals synthesized using chiral methionine molecules as symmetry-breaking agents show hierarchical chirality.
View Article and Find Full Text PDFSurface reconstruction generates real active species in electrochemical conditions; rational regulating reconstruction in a targeted manner is the key for constructing highly active catalyst. Herein, we use the high-valence Mo modulated orthorhombic PrIrMoO as model to activate lattice oxygen and cations, achieving directional and accelerated surface reconstruction to produce self-terminated Ir‒O‒Mo (O represents the bridge oxygen) active species that is highly active for acidic water oxidation. The doped Mo not only contributes to accelerated surface reconstruction due to optimized Ir‒O covalency and more prone dissolution of Pr, but also affords the improved durability resulted from Mo-buffered charge compensation, thereby preventing fierce Ir dissolution and excessive lattice oxygen loss.
View Article and Find Full Text PDFThe oxygen evolution reaction (OER) severely limits the efficiency of proton exchange membrane (PEM) electrolyzers due to slow reaction kinetics. IrO is currently a commonly used anode catalyst, but its large-scale application is limited due to its high price and scarce reserves. Herein, we reported a practical strategy to construct an acid OER catalyst where Iridium oxide loading and iridium element bulk doping are realized on the surface and inside of WO nanowires by immersion adsorption, respectively.
View Article and Find Full Text PDFDynamic reconstruction of catalyst active sites is particularly important for metal oxide-catalyzed oxygen evolution reaction (OER). However, the mechanism of how vacancy-induced reconstruction aids OER remains ambiguous. Here, we use CoO with Co or O vacancies to uncover the effects of different defects in the reconstruction process and the active motifs relevant to alkaline OER.
View Article and Find Full Text PDFThe excessive dependence on fossil fuels contributes to the majority of CO emissions, influencing on the climate change. One promising alternative to fossil fuels is green hydrogen, which can be produced through water electrolysis from renewable electricity. However, the variety and complexity of hydrogen evolution electrocatalysts currently studied increases the difficulty in the integration of catalytic theory, catalyst design and preparation, and characterization methods.
View Article and Find Full Text PDFNatural water-soluble Monascus pigments (WSMPs) have been in increasing demand but have not been able to achieve industrial production due to the low production rate. This study aimed to improve the biosynthesis and secretion of extracellular yellow pigments (EYPs) through submerged fermentation with Monascus ruber CGMCC 10,910 supplemented with sodium starch octenyl succinate (OSA-SNa). The results demonstrated that the yield was 69.
View Article and Find Full Text PDFDeveloping efficient and low-cost electrocatalysts for oxygen evolution reaction is crucial in realizing practical energy systems for sustainable fuel production and energy storage from renewable energy sources. However, the inherent linear scaling relation for most catalytic materials imposes a theoretical overpotential ceiling, limiting the development of efficient electrocatalysts. Herein, using modeled NaMnO materials, we report an effective strategy to construct better oxygen evolution electrocatalyst through tuning both lattice oxygen reactivity and scaling relation via alkali metal ion mediation.
View Article and Find Full Text PDFMonascus pigments (MPs) are widely used natural colorants in Asian countries. The problems of low extracellular red pigment (ERP) and high citrinin remain to be solved in Monascus pigment production. The effect of lanthanum(III) ion (LaCl) on Monascus purpureus fermentation was investigated in this study.
View Article and Find Full Text PDFMycelial adhesion affects cell growth and the production of water-soluble extracellular yellow pigment (EYP) in submerged fermentation with Monascus ruber CGMCC 10910. Two nitrates, NaNO and KNO, were used as nitrogen sources for mitigating mycelial adhesion and improving the production of EYP in this study. The results showed that the adhesion of mycelia in the fermentation broth significantly decreased by adding 5 g/L NaNO, which prevented mycelia from attaching to the inner wall of the Erlenmeyer flask.
View Article and Find Full Text PDFElectricity-driven water splitting can facilitate the storage of electrical energy in the form of hydrogen gas. As a half-reaction of electricity-driven water splitting, the oxygen evolution reaction (OER) is the major bottleneck due to the sluggish kinetics of this four-electron transfer reaction. Developing low-cost and robust OER catalysts is critical to solving this efficiency problem in water splitting.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2019
Electrochemical CO reduction relies on the availability of highly efficient and selective catalysts. Herein, we report a general strategy to boost the activity of metal-organic frameworks (MOFs) towards CO reduction via ligand doping. A strong electron-donating molecule of 1,10-phenanthroline was doped into Zn-based MOFs of zeolitic imidazolate framework-8 (ZIF-8) as CO reduction electrocatalyst.
View Article and Find Full Text PDFis a crude dietary therapeutic mushroom with high nutritional and medicinal values. Mushroom-derived polysaccharides have been found to possess antihyperglycemic and antihyperlipidemic activities. This study aimed to partially clarify the structural characterization and comparatively evaluate hypolipidemic potentials of intracellular- (IPCM) and extracellular polysaccharides of (EPCM) in high fat diet fed mice.
View Article and Find Full Text PDFThe development of highly active, universal, and stable inexpensive electrocatalysts/cocatalysts for hydrogen evolution reaction (HER) by morphology and structure modulations remains a great challenge. Herein, a simple self-template strategy was developed to synthesize hollow Co-based bimetallic sulfide (MxCo3-xS4, M = Zn, Ni, and Cu) polyhedra with superior HER activity and stability. Homogenous bimetallic metal-organic frameworks are transformed to hollow bimetallic sulfides by solvothermal sulfidation and thermal annealing.
View Article and Find Full Text PDFThe conversion, storage, and utilization of renewable energy have all become more important than ever before as a response to ever-growing energy and environment concerns. The performance of energy-related technologies strongly relies on the structure and property of the material used. The earth-abundant family of tungsten oxides (WOx ≤3 ) receives considerable attention in photocatalysis, electrochemistry, and phototherapy due to their highly tunable structures and unique physicochemical properties.
View Article and Find Full Text PDFWater oxidation is the key step for both photocatalytic water splitting and CO₂ reduction, but its efficiency is very low compared with the photocatalytic reduction of water. Bismuth vanadate (BiVO₄) is the most promising photocatalyst for water oxidation and has become a hot topic for current research. However, the efficiency achieved with this material to date is far away from the theoretical solar-to-hydrogen conversion efficiency, mainly due to the poor photo-induced electron transportation and the slow kinetics of oxygen evolution.
View Article and Find Full Text PDFMesoporous hollow W18O49 spheres were fabricated by a facile solvent-induced assembly method using anhydrous WCl6 as a precursor and CH3COOH as a solvent. This unique structure exhibited remarkably enhanced photocatalytic and photoelectrocatalytic performance than other morphologies like urchin and nanowire due to the simultaneous enhancement in light harvesting, surface area and adsorption capability.
View Article and Find Full Text PDF