Aluminum (Al) is ubiquitous and toxic to microbes. High Al concentration and low pH are two key factors responsible for Al toxicity, but our present results contradict this idea. Here, an Al-tolerant yeast strain Rhodotorula taiwanensis RS1 was incubated in glucose media containing Al with a continuous pH gradient from pH 3.
View Article and Find Full Text PDFRhodotorula taiwanensis RS1 (Rt) is a high-aluminum (Al)-tolerant yeast that can survive Al at concentrations up to 200 mM. In this study, we compared Rt with an Al-sensitive congeneric strain, R. mucilaginosa AKU 4812 (Rm) and Al sensitive mutant 1 (alsm1) of Rt, to explore the Al tolerance mechanisms of Rt.
View Article and Find Full Text PDFBackground And Aims: Manganese (Mn) and aluminium (Al) phytotoxicities occur mainly in acid soils. In some plant species, Al alleviates Mn toxicity, but the mechanisms underlying this effect are obscure.
Methods: Rice (Oryza sativa) seedlings (11 d old) were grown in nutrient solution containing different concentrations of Mn(2+) and Al(3+) in short-term (24 h) and long-term (3 weeks) treatments.