Publications by authors named "Zhen LIANG"

Signet-ring cell carcinoma is a poorly differentiated adenocarcinoma with a high degree of malignancy, which rarely occurs in hilar bile duct. As far as I know, this is the third signet-ring cell carcinoma of hilar cholangiocarcinoma found so far. We used endoscopic ultrasound(EUS) and per-oral cholangioscopy(POCPS) to make a definite diagnosis.

View Article and Find Full Text PDF

Presently, researchers are placing emphasis on microwave absorption coating design while neglecting the research on materials that integrate both microwave absorption performance and mechanical properties. Here, robust FeSiAl/PEEK composites were prepared by a series process, including post ball-milling annealing, sol-gel method, and hot pressing. A detailed analysis of the electromagnetic (EM) parameters reveals the significant effects of morphology, filling ratio, and microstructure of FeSiAl on EM losses under a wide-temperature range.

View Article and Find Full Text PDF

With the potential to surpass the Shockley-Queisser (S-Q) limitation for solar energy conversion, the bulk photovoltaic (BPV) effect, which is induced by the broken inversion symmetry of the lattice, presents prospects for future light-harvesting technologies. However, the development of BPV is largely limited by the low solar spectrum conversion efficiency of existing noncentrosymmetric materials with wide band gaps. This study reports that the strain-induced reduction of inversion symmetry can enhance the second-order nonlinear susceptibility (χ) of SnPSe crystals by an order of magnitude, which contributes to an extremely high value of 1.

View Article and Find Full Text PDF

Synonymous mutations, once considered neutral, are now understood to have significant implications for a variety of diseases, particularly cancer. It is indispensable to identify these driver synonymous mutations in human cancers, yet current methods are constrained by data limitations. In this study, we initially investigate the impact of sequence-based features, including DNA shape, physicochemical properties and one-hot encoding of nucleotides, and deep learning-derived features from pre-trained chemical molecule language models based on BERT.

View Article and Find Full Text PDF

The Streptococcus canis Cas9 protein (ScCas9) recognizes the NNG protospacer adjacent motif (PAM), offering a wider range of targets than that offered by the commonly used S. pyogenes Cas9 protein (SpCas9). However, both ScCas9 and its evolved Sc++ variant still exhibit low genome editing efficiency in plants, particularly at the less preferred NTG and NCG PAM targets.

View Article and Find Full Text PDF

Understanding protein structure is essential for elucidating its function. Cross-linking mass spectrometry (XL-MS) has been widely recognized as a powerful tool for analyzing protein complex structures. However, the effect of cross-linker backbone structure on protein dynamic conformation analysis remains less understood.

View Article and Find Full Text PDF

Background: As modern industrial activities have advanced, the prevalence of microplastics and nanoplastics in the environment has increased, thereby impacting plant growth. Potassium is one of the most crucial nutrient cations for plant biology. Understanding how polyethylene terephthalate (PET) treatment affects potassium uptake will deepen our understanding of plant response mechanisms to plastic pollution.

View Article and Find Full Text PDF

Background: Rice bean (Vigna umbellata), an underrated legume crop, demonstrates strong adaptability to poor soil fertility and has significant potential to enhance global food security. It is valuable both as a vegetable and fodder crop due to its high protein content, essential fatty acids, and micronutrients. Despite the sequencing of a high-quality genome of rice bean, its mitochondrial genome (mitogenome) sequence has not yet been reported.

View Article and Find Full Text PDF

Inability to express the confidence level and detect unseen disease classes limits the clinical implementation of artificial intelligence in the real world. We develop a foundation model with uncertainty estimation (FMUE) to detect 16 retinal conditions on optical coherence tomography (OCT). In the internal test set, FMUE achieves a higher F1 score of 95.

View Article and Find Full Text PDF

Featuring the capabilities of self-power, low dark current, and broadband response, photothermoelectric (PTE) detection demonstrates great potential for application in the military and civilian fields. The development of materials with an intrinsically high efficiency for PTE energy conversion and the in-depth study of its thermoelectric properties on the device performance are of great significance. Here, we reported a quasi-one-dimensional (quasi-1D) van der Waals (vdW) TaSe crystal as a promising material candidate for PTE detection.

View Article and Find Full Text PDF

Herein, a photocatalytic strategy for the synthesis of secondary alcohols by nucleophilic addition of an alkene with an aldehyde is described. This operationally simple methodology opens an approach for the synthesis of alcohols using commercially available reagents in moderate to excellent yields. Mechanistic studies indicate that the formation of the radical anion from alkene via single-electron transfer is the key step in this reaction.

View Article and Find Full Text PDF

The increasing utilization of deep neural networks (DNNs) in safety-critical systems has raised concerns about their potential to exhibit undesirable behaviors. Consequently, DNN repair/patching arises in response to the times, and it aims to eliminate unexpected predictions generated by flawed DNNs. However, existing repair methods, both retraining- and fine-tuning-based, primarily focus on high-level abstract interpretations or inferences of state spaces, often neglecting the outputs of underlying neurons.

View Article and Find Full Text PDF

Micro-absorption spectroscopy is a useful tool for studying the biological characteristics of single cells. However, the weak spectral signal, due to low absorption caused by the tiny optical path length of the cell, makes the spectral data noisy and difficult to analyze. This paper describes a device for single-cell microspectroscopy measurement that integrates an optical fiber spectrometer and an image CCD within a microscopic system, allowing for the simultaneous acquisition of morphology information and the absorption spectrum of a single cell.

View Article and Find Full Text PDF

AlkB homolog 5 (ALKBH5) plays an important role in ischemia/reperfusion (I/R), cardiac hypertrophy and other cardiovascular diseases (CVDs). However, whether ALKBH5 regulates the inflammatory response by mediating M1/M2 macrophage conversion after myocardial infarction (MI) is unclear. In this study, we found that ALKBH5 protein expression was significantly downregulated in MI mice.

View Article and Find Full Text PDF

Recent advances in single-cell proteomics enable the direct profiling of thousands of proteins from a single mammalian cell. However, due to the bottlenecks in detecting low-abundance secreted proteins and extracellular vesicle (EV) proteins (collectively referred to as the secretome) against a background of high-abundance proteins in serum-containing culture medium, the comprehensive investigation of the secretome at the single-cell level using nanoLC-MS/MS still remains challenging. Herein, we report a novel single-cell secretome profiling (SCSP) method by integrating the metabolic labeling of newly synthesized proteins, click chemistry-based enrichment, and in situ digestion of the labeled secretome in an alkyne-functionalized capillary micro-reactor, followed by nanoLC-MS/MS analysis.

View Article and Find Full Text PDF
Article Synopsis
  • - The study introduces
  • TAggiXL
  • , a new method that improves the isolation and analysis of protein aggregates in live cells by combining fluorescence tracking with cross-linking proteomics.
  • - This technique enables unbiased profiling of the aggregated proteome and its interactions, revealing important components like
  • E3 ubiquitin ligase TRIM26
  • and the interaction hub
  • HSPA1B
  • , which are crucial for understanding protein aggregation.
  • - TAggiXL provides insights into protein aggregation mechanisms, especially under stress conditions, and may lead to better strategies for treating degenerative diseases linked to protein aggregation.
View Article and Find Full Text PDF

Background: Naturalistic stimuli, such as videos, can elicit complex brain activations. However, the intricate nature of these stimuli makes it challenging to attribute specific brain functions to the resulting activations, particularly for higher-level processes such as social interactions.

Objective: We hypothesized that activations in different layers of a convolutional neural network (VGG-16) would correspond to varying levels of brain activation, reflecting the brain's visual processing hierarchy.

View Article and Find Full Text PDF

Intelligent neuromorphic hardware holds considerable promise in addressing the growing demand for massive real-time data processing in edge computing. Resistive switching materials with intrinsic anisotropy and a compact design of non-volatile memory devices with the capability of handling spatiotemporally reconstructed data is crucial to perform sophisticated tasks in complex application scenarios. In this study, an anisotropic resistive switching cell with a planar configuration based on lithiated NbSe nanosheets is demonstrated.

View Article and Find Full Text PDF

Neurofeedback, when combined with cognitive reappraisal, offers promising potential for emotion regulation training. However, prior studies have predominantly relied on functional magnetic resonance imaging, which could impede its clinical feasibility. Furthermore, these studies have primarily focused on reducing negative emotions while overlooking the importance of enhancing positive emotions.

View Article and Find Full Text PDF

The application of ketoconazole (KET) in ocular drug delivery is restricted by its poor aqueous solubility though its broad-spectrum antifungal activity. The aim of this study is to develop an ion-sensitive gel (ISG) of KET to promote its ocular bioavailability in topical application. The solubility of KET in water was increased by complexation with hydroxypropyl-β-cyclodextrin (HPβCD), then KET-HPβCD inclusion complex (KET-IC) was fabricated into an ion-sensitive ISG triggered by sodium alginate (SA).

View Article and Find Full Text PDF

Photocatalytic proximity labeling has shown great promise for mapping the spatiotemporal dynamics of surfaceome. Although cell-surface targeting photosensitizers relying on antibodies, lipid molecules, and metabolic labeling have gained effects, the development of simpler and stable methods that avoid complex chemical synthesis and biosynthesis steps is still a huge challenge. Here, the study has introduced 2D nanomaterials with the ability of cell surface engineering to perform the in situ anchoring of photosensitizer on living cell surface.

View Article and Find Full Text PDF

Although immunotherapy has revolutionized cancer treatment, its efficacy is affected by multiple factors, particularly those derived from the complexity and heterogeneity of the tumor-immune microenvironment (TIME). Strategies that simultaneously and synergistically engage multiple immune cells in TIME remain highly desirable but challenging. Herein, we report a multimodal and programmable platform that enables the integration of multiple therapeutic modules into single agents for tumor-targeted co-engagement of multiple immune cells within TIME.

View Article and Find Full Text PDF

TGF-β stimulates CCN2 expression which in turn amplifies TGF-β signaling. This process promotes extracellular matrix production and accelerates the pathological progression of fibrotic diseases. Alternative splicing plays an important role in multiple disease development, while U2 small nuclear RNA auxiliary factor 2 (U2AF2) is an essential factor in the early steps of pre-mRNA splicing.

View Article and Find Full Text PDF

As a newly discovered Janus van der Waals (vdW) material, semiconducting NbSeI offers several notable advantages, including spontaneous out-of-plane polarization, facile exfoliation to the monolayer limit, and significant out-of-plane emission dipole in second harmonic generation. These properties make it a promising candidate for piezoelectric and piezophototronic applications in highly efficient energy conversion. However, NbSeI is prone to oxidation when exposed to oxygen, which can severely limit the exploration and utilization of these intriguing physical properties.

View Article and Find Full Text PDF