J Cogn Neurosci
December 2022
Primate frontopolar cortex (FPC), occupied by area 10, sits atop a functional hierarchy of prefrontal cortical regions, yet little is known about its involvement in wider cortical networks. Here we examined resting-state-functional-connectivity (rsfc) in rhesus monkeys with intact or lesioned FPC to identify cortical regions associated with FPC. We present a network of FPC-specific regions of interest (ROIs), whose connectivity was affected by lesion of FPC but not by lesion of neighbouring prefrontal cortex (principal sulcus).
View Article and Find Full Text PDFFront Psychol
November 2021
In a hazardous environment, it is fundamentally important to successfully evaluate the motion of sounds. Previous studies demonstrated "auditory looming bias" in both macaques and humans, as looming sounds that increased in intensity were processed preferentially by the brain. In this study on rats, we used a prepulse inhibition (PPI) of the acoustic startle response paradigm to investigate whether auditory looming sound with intrinsic warning value could draw attention of the animals and dampen the startle reflex caused by the startling noise.
View Article and Find Full Text PDFAccording to dual-process signal-detection (DPSD) theories, short- and long-term recognition memory draws upon both familiarity and recollection. It remains unclear how primate prefrontal cortex (PFC) contributes to these processes, but frequency-specific neuronal activities are considered to play a key role. In Experiment 1, nonhuman primate (NHP) local field potential (LFP) electrophysiological recordings in macaque left dorsolateral PFC (dlPFC) revealed performance-related differences in a low-beta frequency range during the sample presentation phase of a visual object recognition memory task.
View Article and Find Full Text PDFEur J Neurosci
October 2021
Detection of transient changes in interaural correlation is based on the temporal precision of the central representations of acoustic signals. Whether schizophrenia impairs the temporal precision in the interaural correlation process is not clear. In both participants with schizophrenia and matched healthy-control participants, this study examined the detection of a break in interaural correlation (BIC, a change in interaural correlation from 1 to 0 and back to 1), including the longest interaural delay at which a BIC was just audible, representing the temporal extent of the primitive auditory memory (PAM).
View Article and Find Full Text PDFNeuropsychol Dev Cogn B Aging Neuropsychol Cogn
September 2022
Aging impairs visual associative memories. Up to date, little is known about whether aging impairs auditory associative memories. Using the head-related-transfer function to induce perceived spatial locations of auditory phonemes, this study used an audiospatial paired-associates-learning (PAL) paradigm to assess the auditory associative memory for phoneme-location pairs in both younger and older adults.
View Article and Find Full Text PDFAccording to dual-process theory, recognition memory performance draws upon two processes, familiarity and recollection. The relative contribution to recognition memory are commonly distinguished in humans by analyzing receiver-operating-characteristics (ROC) curves; analogous methods are more complex and very rare in animals but fast familiarity and slow recollective-like processes (FF/SR) have been detected in nonhuman primates (NHPs) based on analyzing recognition error response time profiles. The relative utility of these methods to investigate familiarity and recollection/recollection-like processes across species is uncertain; indeed, even how comparable the FF/SR measures are across humans and NHPs remains unclear.
View Article and Find Full Text PDFPrepulse inhibition (PPI) can be modulated by both the Val158Met (rs4680) polymorphism of the Catechol-O-Methyltransferase (COMT) gene and the menstrual-cycle-related hormone fluctuations, each of which affects the subcortical/cortical dopamine metabolism. PPI can also be modulated by attention. The attentional modulation of PPI (AMPPI) is sensitive to psychoses.
View Article and Find Full Text PDFPrepulse inhibition (PPI) is the suppression of the startle reflex, when a weaker non-startling sensory stimulus (the prepulse) precedes the intense startling stimulus. Although the basic PPI neural circuitry resides in the brainstem, PPI can be enhanced by selective attention to the prepulse, indicating that this sensorimotor-gating process is influenced by higher-order perceptual/cognitive processes. Along with the auditory cortex, the brain structures involved in attentional modulations of PPI include both the lateral nucleus of the amygdala (LA), which contributes to the fear-conditioning modulation, and the posterior parietal cortex (PPC), which contributes to the spatially attentional modulation.
View Article and Find Full Text PDFCentral processing of interaural correlation (IAC), which depends on the precise representation of acoustic signals from the two ears, is essential for both localization and recognition of auditory objects. A complex soundwave is initially filtered by the peripheral auditory system into multiple narrowband waves, which are further decomposed into two functionally distinctive components: the quickly-varying temporal-fine structure (TFS) and the slowly-varying envelope. In rats, a narrowband noise can evoke auditory-midbrain frequency-following responses (FFRs) that contain both the TFS component (FFR) and the envelope component (FFR), which represent the TFS and envelope of the narrowband noise, respectively.
View Article and Find Full Text PDFTreatments for the positive and negative symptoms of schizophrenia have been explored for decades, but no completely successful therapy has been found as yet. Metabotropic glutamate receptor 5 (mGluR5), which potentiates N-methyl-D-aspartate receptors in brain regions implicated in schizophrenia, has become a novel drug target in the treatment of schizophrenia, especially for the mGluR5-positive allosteric modulators. Individuals with schizophrenia show deficits in prepulse inhibition (PPI), which is an operational measurement of sensorimotor gating.
View Article and Find Full Text PDFRational: Prepulse inhibition (PPI) is suppression of the startle reflex by a weaker sensory stimulus (prepulse) preceding the startling stimulus. In people with schizophrenia, impairment of attentional modulation of PPI, but not impairment of baseline PPI, is correlated with symptom severity. In rats, both fear conditioning of prepulse and perceptually spatial separation between the conditioned prepulse and a noise masker enhance PPI (the paradigms of attentional modulation of PPI).
View Article and Find Full Text PDFPrepulse inhibition (PPI) is suppression of the startle reflex when an intense startling stimulus is preceded by a weaker sensory stimulus (the prepulse). It is an operational measurement of sensorimotor gating mechanism to help human adapt to complex environment. This weak prepulse protect central cognitive processing by damping the effect of intense stimuli.
View Article and Find Full Text PDFBased on the Motor Theory of speech perception, the interaction between the auditory and motor systems plays an essential role in speech perception. Since the Motor Theory was proposed, it has received remarkable attention in the field. However, each of the three hypotheses of the theory still needs further verification.
View Article and Find Full Text PDF