Publications by authors named "Zhekang Dong"

Human activity recognition has played a crucial role in healthcare information systems due to the fast adoption of artificial intelligence (AI) and the internet of thing (IoT). Most of the existing methods are still limited by computational energy, transmission latency, and computing speed. To address these challenges, we develop an efficient human activity recognition in-memory computing architecture for healthcare monitoring.

View Article and Find Full Text PDF

Memristor-based Pavlov associative memory circuit presented today only realizes the simple condition reflex process. The secondary condition reflex endows the simple condition reflex process with more bionic, but it is only demonstrated in design and involves the large number of redundant circuits. A FeO-based memristor exhibits an evolution process from battery-like capacitance (BLC) state to resistive switching (RS) memory as the sweeping increase.

View Article and Find Full Text PDF

The rapid development of smart factories, combined with the increasing complexity of production equipment, has resulted in a large number of multivariate time series that can be recorded using sensors during the manufacturing process. The anomalous patterns of industrial production may be hidden by these time series. Previous LSTM-based and machine-learning-based approaches have made fruitful progress in anomaly detection.

View Article and Find Full Text PDF

Memristive technologies are attractive due to their non-volatility, high-density, low-power and compatibility with CMOS. For memristive devices, a model corresponding to practical behavioral characteristics is highly favorable for the realization of its neuromorphic system and applications. This paper presents a novel flexible memristor model with electronic resistive switching memory behavior.

View Article and Find Full Text PDF

Aiming at the current problem of insufficient extraction of small retinal blood vessels, we propose a retinal blood vessel segmentation algorithm that combines supervised learning and unsupervised learning algorithms. In this study, we use a multiscale matched filter with vessel enhancement capability and a U-Net model with a coding and decoding network structure. Three channels are used to extract vessel features separately, and finally, the segmentation results of the three channels are merged.

View Article and Find Full Text PDF

In recent years, convolution operations often consume a lot of time and energy in deep learning algorithms, and convolution is usually used to remove noise or extract the edges of an image. However, under data-intensive conditions, frequent operations of the above algorithms will cause a significant memory/communication burden to the computing system. This paper proposes a circuit based on spin memristor cross array to solve the problems mentioned above.

View Article and Find Full Text PDF

Effective traffic sign recognition algorithms can assist drivers or automatic driving systems in detecting and recognizing traffic signs in real-time. This paper proposes a multiscale recognition method for traffic signs based on the Gaussian Mixture Model (GMM) and Category Quality Focal Loss (CQFL) to enhance recognition speed and recognition accuracy. Specifically, GMM is utilized to cluster the prior anchors, which are in favor of reducing the clustering error.

View Article and Find Full Text PDF

Although correlation filter-based trackers (CFTs) have made great achievements on both robustness and accuracy, the performance of trackers can still be improved, because most of the existing trackers use either a sole filter template or fixed features fusion weight to represent a target. Herein, a real-time dual-template CFT for various challenge scenarios is proposed in this work. First, the color histograms, histogram of oriented gradient (HOG), and color naming (CN) features are extracted from the target image patch.

View Article and Find Full Text PDF

Memristor is a nanoscale circuit element with nonvolatile, binary, multilevel and analog states. Its conductance (resistance) plasticity is similar to biological synapses. Information sparse coding is considered as the key mechanism of biological neural systems to process mass complex perception data, which is applied in the fields of signal processing, computer vision and so on.

View Article and Find Full Text PDF

In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN) inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy.

View Article and Find Full Text PDF

Cellular nonlinear/neural network (CNN) has been recognized as a powerful massively parallel architecture capable of solving complex engineering problems by performing trillions of analog operations per second. The memristor was theoretically predicted in the late seventies, but it garnered nascent research interest due to the recent much-acclaimed discovery of nanocrossbar memories by engineers at the Hewlett-Packard Laboratory. The memristor is expected to be co-integrated with nanoscale CMOS technology to revolutionize conventional von Neumann as well as neuromorphic computing.

View Article and Find Full Text PDF