Publications by authors named "Zhekang Cheng"

Cerebral ischemia (CI) results from inadequate blood flow to the brain. The difficulty of delivering therapeutic molecules to lesions resulting from CI hinders the effective treatment of this disease. The inflammatory response following CI offers a unique opportunity for drug delivery to the ischemic brain and targeted cells because of the recruitment of leukocytes to the stroke core and penumbra.

View Article and Find Full Text PDF

Chemotherapy outcomes for the treatment of glioma remains unsatisfactory due to the inefficient drug transport across the blood-brain barrier (BBB) and insufficient drug accumulation in the tumor region. Although many approaches, including various nanosystems, have been developed to promote the distribution of chemotherapeutics in the brain tumor, the delivery efficiency and the possible damage to the normal brain function still greatly restrict the clinical application of the nanocarriers. Therefore, it is urgent and necessary to discover more safe and effective BBB penetration and glioma-targeting strategies.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic, systemic, progressive autoimmune disease. The vascular permeability of inflamed joints in RA makes it a natural candidate for passive targeting, similar to the enhanced permeability and retention (EPR) effect in solid tumors. Thus, various therapeutic drugs have been encapsulated in nanocarriers to achieve longer in vivo circulation times and improve RA targeting.

View Article and Find Full Text PDF

Ginseng has been used worldwide as traditional medicine for thousands of years, and ginsenosides have been proved to be the main active components for their various pharmacological activities. Based on their structures, ginsenosides can be divided into ginseng diol-type A and ginseng triol-type B with different pharmacological effects. In this study, six ginsenosides, namely ginsenoside Rb1, Rh2, Rg3, Rg5 as diol-type ginseng saponins, and Rg1 and Re as triol-type ginseng saponins, which were reported to be effective for ischemia-reperfusion (I/R) treatment, were chosen to compare their protective effects on cerebral I/R injury, and their mechanisms were studied by in vitro and in vivo experiments.

View Article and Find Full Text PDF

Background: Sotetsuflavone is isolated from Cycas revoluta Thunb., which has biological activity against tumors. However, the anti-proliferative effects of sotetsuflavone on A549 cells and its mechanism are not fully elucidated.

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT) is associated with tumor invasion and metastasis, and offers insight into novel strategies for cancer treatment. Sotetsuflavone was isolated from , which has excellent anticancer activity in the early stages. The present study aims to evaluate the anti-metastatic potential of sotetsuflavone in vitro.

View Article and Find Full Text PDF