Publications by authors named "Zhekai Ming"

Interictal epileptiform discharges (IED) as large intermittent electrophysiological events are associated with various severe brain disorders. Automated IED detection has long been a challenging task, and mainstream methods largely focus on singling out IEDs from backgrounds from the perspective of waveform, leaving normal sharp transients/artifacts with similar waveforms almost unattended. An open issue still remains to accurately detect IED events that directly reflect the abnormalities in brain electrophysiological activities, minimizing the interference from irrelevant sharp transients with similar waveforms only.

View Article and Find Full Text PDF

Artifact removal has been an open critical issue for decades in tasks centering on EEG analysis. Recent deep learning methods mark a leap forward from the conventional signal processing routines; however, those in general still suffer from insufficient capabilities 1) to capture potential temporal dependencies embedded in EEG and 2) to adapt to scenarios without a priori knowledge of artifacts. This study proposes an approach (namely DuoCL) to deep artifact removal with a dual-scale CNN (Convolutional Neural Network)-LSTM (Long Short-Term Memory) model, operating on the raw EEG in three phases: 1) Morphological Feature Extraction, a dual-branch CNN utilizes convolution kernels of two different scales to learn morphological features (individual sample); 2) Feature Reinforcement, the dual-scale features are then reinforced with temporal dependencies (inter-sample) captured by LSTM; and 3) EEG Reconstruction, the resulting feature vectors are finally aggregated to reconstruct the artifact-free EEG via a terminal fully connected layer.

View Article and Find Full Text PDF