Ovarian aging typically precedes the decline of other organ systems, yet its molecular mechanisms remain poorly understood. Glycosylation as one of the most important protein modifications has been especially unexplored in this context. Here, we present the first high-resolution glycoproteomic landscape of aging mouse ovaries, uncovering site-specific N-glycan signatures across subcellular components such as high proportions of complex glycans, core fucosylation, and LacdiNAc branches at the zone pellucida.
View Article and Find Full Text PDF-Acetylation is a significant chemical modification of sialic acids on glycoproteins with diverse biological functions. As two important animal models, mice and rats have been widely used for various biomedical studies. In this study, we show that the sialic acid types and their -acetylation patterns have large differences among serum glycoproteins of humans, rats, and mice.
View Article and Find Full Text PDFCarbohydr Polym
January 2025
High-abundance serum proteins, mostly modified by N-glycans, are usually depleted from human sera to achieve in-depth analyses of serum proteome and sub-proteomes. In this study, we show that these high-abundance glycoproteins (HAGPs) can be used as valuable standard glycopeptide resources, as long as the structural features of their glycans have been well defined at the glycosite-specific level. By directly analyzing intact glycopeptides enriched from serum, we identified 1322 unique glycopeptides at 48 N-glycosites from the top 12 HAGPs (19 subclasses).
View Article and Find Full Text PDFIntrahepatic cholangiocellular carcinoma (ICC) is a challenging malignancy marked by subtle early symptoms and a high mortality rate, making effective diagnostic markers crucial for early detection and improved patient outcomes. Currently, the conventional diagnosis of ICC is not easily distinguishable from Hepatocellular Carcinoma (HCC) and lacks highly specific and sensitive diagnostic markers. Protein glycosylation, pivotal in biological processes, shows promise for cancer biomarkers due to its association with disease progression.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2024
In this study, we use molecular dynamics (MD) simulation to study pressure-driven CO and CH flows and their slippage behaviors in β-cristobalite mesopores. The result illustrates that both CO and CH have an apparent adsorption layer on pore surface. However, significant differences in gas slippage are observed: CH flow shows considerable slippage, while it is negligible for CO flow.
View Article and Find Full Text PDFLarge-scale underground hydrogen storage (UHS) plays a vital role in energy transition. H-brine interfacial tension (IFT) is a crucial parameter in structural trapping in underground geological locations and gas-water two-phase flow in subsurface porous media. On the other hand, cushion gas, such as CO, is often co-injected with H to retain reservoir pressure.
View Article and Find Full Text PDFFluid transport in kerogen is mainly diffusion-driven, while its dependence on pore informatics is still poorly understood. It is challenging for experiments to identify the effect of pore informatics (such as pore connectivity and tortuosity) on fluid transport therein. Therefore, in this work, we use molecular dynamics simulations to study methane transport behaviors in amorphous kerogen matrices with broad pore properties.
View Article and Find Full Text PDFIn this work, we conduct molecular dynamics simulations to investigate pressure-driven brine flow in silica mesopores under typical reservoir conditions (323 K and 20 MPa). While surface counterions accumulate strongly in the vicinity of fully deprotonated silica surfaces, water forms multilayer structures due to hydrogen bonding, counterion hydration, and excluded-volume effect. Brine flow behaviors exhibit adsorption, transition, and bulk-like regions in fully deprotonated silica mesopores, while the transition region is negligible in fully protonated ones.
View Article and Find Full Text PDFSupramolecular polymers are formed through nucleation (i. e., initiation) and polymerization processes, and kinetic control over the nucleation process has recently led to the realization of living supramolecular polymerization.
View Article and Find Full Text PDFDue to the fracturing fluid imbibition and primary water, oil-water two-phase fluids generally exist in shale nanoporous media. The effects of water phase on shale oil recovery and geological carbon sequestration via CO huff-n-puff is non-negligible. Meanwhile, oil-CO miscibility after CO huff-n-puff also has an important effect on oil-water two-phase flow behaviors.
View Article and Find Full Text PDFRecent research revealed inhibition or enhancement of dissolved organic matter (DOM) to the degradation of trace organic contaminants (TrOC) in natural and engineered water systems. Phenols containing acetyl, carboxyl, formyl, hydroxy, and methoxy groups were selected as the model DOM to quantitatively study their roles in the degradation of simple anilines, sulfonamide antibiotics, phenylurea pesticides by sulfate radicals (SO). Experimental results found that p-methoxyphenol inhibited aniline and sulfamethoxazole degradation by thermally activated peroxydisulfate (TAP), while p-acetylphenol slightly promoted aniline degradation.
View Article and Find Full Text PDFThe aggregation behavior of carboxymethyl chitosan (CMCS) plays an important role in its extensive applications. Here, we perform molecular dynamics simulations to investigate aggregation behaviors of CMCS in water and the effects of degrees of deacetylation (DD) and substitution (DS) and ionization states (equivalently different pH conditions). CMCS prefers to aggregate in neutral condition, self-assembling into multimeric forms with interlaced stacking of molecular chains, while forming dimer or trimer through twisted stacking and parallel stacking in acidic and alkaline conditions, respectively.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2022
Hypothesis: Pseudo-Gemini surfactants (PGS) possessing switchable and recyclable features have drawn increasing attention on generating high-performance CO-responsive emulsions for wide range and versatile applications. However, there is a lack of fundamental understanding on how the molecular structure of PGS affects the stability and switchability of emulsions. We hypothesize that the length and type of the spacer in PGS play a decisive role in controlling interfacial and switching properties.
View Article and Find Full Text PDFAs one common unconventional reservoir, shale plays a pivotal role to compensate the depletion of conventional oil resources. There are numerous nanoscale pores and ultra-narrow pore throats (sub 2 nm) in shale media. To displace oil through ultra-narrow pore throats by water, one needs to overcome excessively-high capillary pressure.
View Article and Find Full Text PDFDivalent ions, which are omnipresent in brine, may be detrimental to surfactant functionalities during chemical flooding in the enhanced oil recovery (EOR) process. Surfactant blending is one potential solution to overcome such an adverse effect. Herein, we report a molecular dynamics (MD) study to investigate the molecular arrangement and possible applications of surfactant blending in hard water-resistant chemical flooding for oil recovery.
View Article and Find Full Text PDFSalt ion valency and concentration vary in actual oil reservoirs, which play an important role in the functionalities of surfactant formula during chemical flooding processes to enhance oil recovery. Herein, we report a molecular dynamics (MD) study to investigate the ion valency and concentration effect on the structural and thermodynamic properties of brine-decane interfaces with anionic surfactant (SDS), under typical reservoir conditions (353 K and 200 bar). We use two different cations (Na and Ca) and a wide range of ion concentrations (up to 3.
View Article and Find Full Text PDFDespite a great promise in the enhanced oil recovery in tight formations, CO flooding with surfactants is hindered due to the low surfactant solubility in supercritical CO (scCO). Alcohol blending can increase the sodium bis(2-ethylhexyl) sulfosuccinate (AOT) solubility in scCO. While this finding offers a promising solution to CO flooding in tight oil reservoirs, to the best of our knowledge, their working mechanism still remains elusive.
View Article and Find Full Text PDFThe lithium-sulfur (Li-S) battery is regarded as a promising secondary battery. However, constant parasitic reactions between the Li anode and soluble polysulfide (PS) intermediates significantly deteriorate the working Li anode. The rational design to inhibit the parasitic reactions is plagued by the inability to understand and regulate the electrolyte structure of PSs.
View Article and Find Full Text PDFWe use molecular dynamic simulations to study the structural properties of deprotonated cyclohexanoic acid (DCHA) and heptanoic acid (DHA) immersed in water in pristine and hydroxylated carbon nanopores (PACNs and HACNs) in relation to NA removal by activated carbons (ACs). In PACNs, both NAs can aggregate on the pore surface by depleting water molecules, while water molecules accumulate in the area where there is no NA aggregation. The hydrophobic tails of NAs are generally in the interface water region (IWR), while the hydrophilic head groups prefer to be hydrated by water and form pairing with Na ions outside the IWR.
View Article and Find Full Text PDFCO sequestration in shale reservoirs is an economically viable option to alleviate carbon emission. Kerogen, a major component in the organic matter in shale, is associated with a large number of nanopores, which might be filled with water. However, the CO storage mechanism and capacity in water-filled kerogen nanopores are poorly understood.
View Article and Find Full Text PDFA cosurfactant is a chemical used in combination with a surfactant to enrich the properties of the primary surfactant formulation. Understanding the roles of a cosurfactant is of great importance in designing a chemical solution with desired features. Herein, we report a molecular dynamics simulation study to explore the roles of alcohol (propanol) as a cosurfactant at a brine-oil interface in chemical flooding under a typical reservoir condition (353 K and 200 bar).
View Article and Find Full Text PDFSurface wettability regulation plays a crucial role in antifouling and related applications. For regulating surface wettability, one of the effective approaches is to modulate the surface charge distribution. Herein, we report a theoretical study for unraveling the mechanistic relation between surface charge distribution and ionic substrate wettability.
View Article and Find Full Text PDFEnhanced recovery of shale gas with CO injection has attracted extensive attention as it combines the advantages of improved efficiency of shale gas recovery and reduced greenhouse gas emissions via CO geological sequestration. On the other hand, the microscopic mechanism of enhanced shale gas recovery with CO injection and the influence of the subsurface water confined in the shale nanopores remain ambiguous. Here, we use grand canonical Monte Carlo (GCMC) simulations to investigate the effect of moisture on the shale gas recovery and CO sequestration by calculating the adsorption of CH and CO in dry and moist kerogen slit pores.
View Article and Find Full Text PDFAccurate characterization of the bubble point pressure of hydrocarbon mixtures under nanoconfinement is crucial to the prediction of ultimate oil recovery and well productivity of shale/tight oil reservoirs. Unlike conventional reservoirs, shale has an extensive network of tiny pores in the range of a few nanometers. In nanopores, the properties of hydrocarbon fluids deviate from those in bulk because of significant surface adsorption.
View Article and Find Full Text PDF