Fabricating large-scale nanoarrays is a significant and challenging work in the field of nanometer devices. Anodic aluminum oxide (AAO) membrane is considered as a promising mask due to its inherent advantages such as low-cost and tunable pore diameter. However, there are few reports on the use of non-through-hole large-area AAO membrane as a mask.
View Article and Find Full Text PDFOxidative damage induced by accumulation of excessive reactive oxygen species (ROS) could result in increased chronic inflammation and thus ageing and age-related diseases. Carbonaceous nanodrugs hold great promise for ameliorating age-related diseases, and it is necessary to develop ultrahigh-yield synthesis of such nanodrugs. To improve the synthetic yield (less than 50%) of carbon nanodots (CNDs), the general choice is to screen precursors.
View Article and Find Full Text PDFWe report a simple strategy for the growth of ultra-thin magnetite nanoplates. The injection of a large portion of precursor after stunted nucleation is favorable for both the survival of metastable structures in seeds and their subsequent development into anisotropic nanoparticles. The as-synthesized ultrathin triangular magnetite nanoplates are expected to have important applications as T contrast agents for magnetic resonance imaging.
View Article and Find Full Text PDFVisual in vivo degradation of hydrogel by fluorescence-related tracking and monitoring is crucial for quantitatively depicting the degradation profile of hydrogel in a real-time and non-invasive manner. However, the commonly used fluorescent imaging usually encounters limitations, such as intrinsic photobleaching of organic fluorophores and uncertain perturbation of degradation induced by the change in molecular structure of hydrogel. To address these problems, we employed photoluminescent carbon nanodots (CNDs) with low photobleaching, red emission and good biocompatibility as fluorescent indicator for real-time and non-invasive visual in vitro/in vivo degradation of injectable hydrogels that are mixed with CNDs.
View Article and Find Full Text PDFInnovative drug delivery technologies based on smart hydrogels for localized on-demand drug delivery had aroused great interest. To acquire smart UV-crosslinkable chitosan hydrogel for NIR-triggered localized on-demanded drug release, a novel UV-crosslinkable and thermo-responsive chitosan was first designed and synthesized by grafting with poly N-isopropylacrylamide, acetylation of methacryloyl groups and embedding with photothermal carbon. The UV-crosslinkable unit (methacryloyl groups) endowed chitosan with gelation via UV irradiation.
View Article and Find Full Text PDF