Publications by authors named "ZheXiong Tang"

Bone marrow stimulation (BMS) is the most used operative treatment in repairing cartilage defect clinically, but always results in fibrocartilage formation, which is easily worn out and needs second therapy. In this study, we prepared an Etanercept (Ept) embedded silk fibroin/pullulan hydrogel to enhance the therapeutic efficacy of BMS. Ept was dissolved in silk fibroin (SF)-tyramine substituted carboxymethylated pullulan (PL) solution and enzyme crosslinked to obtain the Ept contained SF/PL hydrogel.

View Article and Find Full Text PDF

Intra-articular injection of mesenchymal stem cells (MSCs) is a promising strategy for osteoarthritis (OA) treatment. However, more and more studies reveal that the injected MSCs have poor adhesion, migration, and survival in the joint cavity. A recent study shows that tropoelastin (TE) regulates adhesion, proliferation and phenotypic maintenance of MSCs as a soluble additive, indicating that TE could promote MSCs-homing in regenerative medicine.

View Article and Find Full Text PDF

Insufficient vascularization of grafts often leads to delayed tissue ingrowth and impaired tissue function in tissue engineering. The surface topography of grafts plays critical roles in angiogenesis. In the present study, we prepared silk fibroin (SF)-based microtopography films with the number of convex dots ranging from 37 to 4835/mm.

View Article and Find Full Text PDF

Objective: To establish a method for investigating the permeability of calcified cartilage zone (CCZ) and to observe solute transport between articular cartilage (AC) and subchondral bone (SB) through intact CCZ .

Design: We developed a novel fixing device combined with un-decalcified fluorescence observation method to address the permeability of CCZ in live mice. Twenty-four Balb/c female mice aged 1 to 8 months were used to observe the development of CCZ.

View Article and Find Full Text PDF

Combining vapour sensors into arrays is an accepted compromise to mitigate poor selectivity of conventional sensors. Here we show individual nanofabricated sensors that not only selectively detect separate vapours in pristine conditions but also quantify these vapours in mixtures, and when blended with a variable moisture background. Our sensor design is inspired by the iridescent nanostructure and gradient surface chemistry of Morpho butterflies and involves physical and chemical design criteria.

View Article and Find Full Text PDF

For almost a century, the iridescence of tropical Morpho butterfly scales has been known to originate from 3D vertical ridge structures of stacked periodic layers of cuticle separated by air gaps. Here we describe a biological pattern of surface functionality that we have found in these photonic structures. This pattern is a gradient of surface polarity of the ridge structures that runs from their polar tops to their less-polar bottoms.

View Article and Find Full Text PDF

Market demands for new sensors for food quality and safety stimulate the development of new sensing technologies that can provide an unobtrusive sensor form, battery-free operation, and minimal sensor cost. Intelligent labeling of food products to indicate and report their freshness and other conditions is one important possible application of such new sensors. This study applied passive (battery-free) radio frequency identification (RFID) sensors for the highly sensitive and selective detection of food freshness and bacterial growth.

View Article and Find Full Text PDF

We report the synthesis of a series of amphiphilic molecular building blocks that can be self-assembled at the air-water interface to form two- and three-dimensional nanostructures with tunable optoelectronic properties. Compression of these molecular building blocks using the Langmuir-Blodgett method gives rise to monolayer and multilayer thin films with different packing densities and electronic properties that are tunable due to varying pi-pi (hydrophobic) interactions. Depending on the noncovalent interaction between chromophores, we observe a transition toward denser packing with increasing number of phenylene ethynylene repeat units.

View Article and Find Full Text PDF

A novel amphiphilic oligo(ethylene glycol)-C60-hexadecaaniline (A16) tricomponent conjugate, C60>(A16-EG43), possessing a well-defined number of repeating aniline donor units and a hydrophilic ethylene glycol oligomer chain was synthesized. The compound is composed of a covalently bound donor-acceptor chromophore structure. Molecular self-assembly of C60>(A16-EG43) at the air-water interface formed a densely packed Langmuir monolayer with all highly hydrophobic fullerene cages located above the liquid interface.

View Article and Find Full Text PDF

We report here the synthesis and characterization of three amphiphilic fullerene derivatives and their Langmuir-Blodgett thin films. Two of the C(60) amphiphiles are mono-derivatives with a long alkyl chain terminated with either -COOH (2) or NH(2) (3) as the hydrophilic headgroup, and the third one (5) is designed to bear the same NH(2) group as 3 but with 10 additional hydrophobic alkyl chains grafted on the C(60) sphere (Scheme 1). These amphiphiles form stable, ordered monolayers at the air-water interface.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "ZheXiong Tang"

  • - Zhexiong Tang's recent research primarily focuses on enhancing tissue engineering and regenerative medicine, particularly in the treatment of cartilage defects and osteoarthritis through innovative biomaterials and techniques.
  • - Key findings include the development of an Etanercept-embedded silk fibroin/pullulan hydrogel that improves cartilage repair post-bone marrow stimulation, and the use of tropoelastin to enhance the adhesion and migration of mesenchymal stem cells in osteoarthritis treatments.
  • - Additionally, Tang's work explores the significance of microtopographic features in silk fibroin films for promoting angiogenesis, emphasizing how material properties can influence biological responses and tissue integration.