Publications by authors named "Zhe-Yu Shi"

The work intends to extend the moiré physics to three dimensions. Three-dimensional moiré patterns can be realized in ultracold atomic gases by coupling two spin states in spin-dependent optical lattices with a relative twist, a structure currently unachievable in solid-state materials. We give the commensurate conditions under which the three-dimensional moiré pattern features a periodic structure termed a three-dimensional moiré crystal.

View Article and Find Full Text PDF

The superfluorescence effect has received extensive attention due to the many-body physics of quantum correlation in dipole gas and the optical applications of ultrafast bright radiation field based on the cooperative quantum state. Here, we demonstrate not only to observe the superfluorescence effect but also to control the cooperative state of the excitons ensemble by externally applying a regulatory dimension of coupling light fields. A new quasi-particle called cooperative exciton-polariton is revealed in a light-matter hybrid structure of a perovskite quantum dot thin film spin-coated on a Distributed Bragg Reflector.

View Article and Find Full Text PDF

Exciton-polaritons are composite quasiparticles that result from the coupling of excitonic transitions and optical modes. They have been extensively studied because of their quantum phenomena and potential applications in unconventional coherent light sources and all-optical control elements. In this work, we report the observation of Bose-Einstein condensation of the upper polariton branch in a transferable WS monolayer microcavity.

View Article and Find Full Text PDF

The concept of contact interaction is fundamental in various areas of physics. It simplifies physical models by replacing the detailed short-range interaction with a zero-range contact potential that reproduces the same low-energy scattering parameter, i.e.

View Article and Find Full Text PDF

Two-dimensional materials are an emerging class of materials with a wide range of electrical and optical properties and potential applications. Single-layer structures of semiconducting transition metal dichalcogenides are gaining increasing attention for use in field-effect transistors. Here, we report a photoluminescence switching effect based on single-layer WSe transistors.

View Article and Find Full Text PDF

We investigate the radio-frequency spectroscopy of impurities interacting with a quantum gas at finite temperature. In the limit of a single impurity, we show using Fermi's golden rule that introducing (or injecting) an impurity into the medium is equivalent to ejecting an impurity that is initially interacting with the medium, since the "injection" and "ejection" spectral responses are simply related to each other by an exponential function of frequency. Thus, the full spectral information for the quantum impurity is contained in the injection spectral response, which can be determined using a range of theoretical methods, including variational approaches.

View Article and Find Full Text PDF

Inspired by the similarity between the fractal Weierstrass function and quantum systems with discrete scaling symmetry, we establish general conditions under which the dynamics of a quantum system will exhibit fractal structure in the time domain. As an example, we discuss the dynamics of the Loschmidt amplitude and the zero-momentum occupation of a single particle moving in a scale invariant 1/r^{2} potential. In order to show these conditions can be realized in ultracold atomic gases, we perform numerical simulations with practical experimental parameters, which shows that the dynamical fractal can be observed in realistic timescales.

View Article and Find Full Text PDF

We investigate the problem of N identical bosons that are coupled to an impurity particle with infinite mass. For noninteracting bosons, we show that a dynamical impurity-boson interaction, mediated by a closed-channel dimer, can induce an effective boson-boson repulsion which strongly modifies the bound states consisting of the impurity and N bosons. In particular, we demonstrate the existence of two universal "multibody" resonances, where all multibody bound states involving any N emerge and disappear.

View Article and Find Full Text PDF

In this Letter we show that the vortex lattice structure in the Bose-Fermi superfluid mixture can undergo a sequence of structure transitions when the Fermi superfluid is tuned from the BCS regime to the BEC regime. This is due to the difference in the vortex core structure of a Fermi superfluid in the BCS regime and in the BEC regime. In the BCS regime the vortex core is nearly filled, while the density at the vortex core gradually decreases until it empties out in the BEC regime.

View Article and Find Full Text PDF

Scale invariance plays an important role in unitary Fermi gases. Discrete scaling symmetry manifests itself in quantum few-body systems such as the Efimov effect. Here, we report on the theoretical prediction and experimental observation of a distinct type of expansion dynamics for scale-invariant quantum gases.

View Article and Find Full Text PDF

In this Letter we address the issue of how synthetic spin-orbit (SO) coupling can strongly affect three-body physics in ultracold atomic gases. We consider a system which consists of three fermionic atoms, including two spinless heavy atoms and one spin-1/2 light atom subjected to an isotropic SO coupling. We find that SO coupling can induce universal three-body bound states with a negative s-wave scattering length at a smaller mass ratio, where no trimer bound state can exist if in the absence of SO coupling.

View Article and Find Full Text PDF

It is known from the solution of the two-body problem that an anisotropic dipolar interaction can give rise to s-wave scattering resonances, which are named dipolar interaction induced resonances (DIIR). In this Letter, we study the zero-temperature many-body physics of a two-component Fermi gas across a DIIR. In the low-density regime, it is very striking that the resulting pairing order parameter is a nearly isotropic singlet pairing and the physics can be well described by an s-wave resonant interaction potential with finite range conditions, despite the anisotropic nature of the dipolar interaction.

View Article and Find Full Text PDF