Publications by authors named "Zhe Sha"

Article Synopsis
  • Ddi2, a shuttling factor in vertebrates, binds to ubiquitin (Ub) conjugates via its Ub-like domain, unlike its yeast counterparts that have a Ub-associated domain.
  • Deleting Ddi2 results in the accumulation of Ub conjugates due to reduced binding to the proteasome, which impairs protein degradation.
  • The protease activity of Ddi2 is crucial for its function in delivering Ub proteins to the proteasome, influencing protein turnover and potentially preventing stress in the endoplasmic reticulum.
View Article and Find Full Text PDF

Proteasome inhibitors, such as bortezomib (BTZ), are highly effective and widely used treatments for multiple myeloma. One proposed reason for myeloma cells' exceptional sensitivity to proteasome inhibition is that they produce and continually degrade unusually large amounts of abnormal immunoglobulins. We, therefore, hypothesized that, heat shock may also be especially toxic to myeloma cells by causing protein unfolding, increasing further the substrate load on proteasomes, and, thus, putting further stress on their capacity for protein homeostasis.

View Article and Find Full Text PDF

Protein ubiquitination and SUMOylation are required for the maintenance of cellular protein homeostasis, and both increase in proteotoxic conditions ( heat shock or proteasome inhibition). However, we found that when ubiquitination was blocked in several human cell lines by inhibiting the ubiquitin-activating enzyme with TAK243, there was an unexpected, large accumulation of proteins modified by SUMO2/3 chains or SUMO1, but not by several other ubiquitin-like proteins. This buildup of SUMOylated proteins was evident within 3-4 h.

View Article and Find Full Text PDF

In certain physiological or pathological states (e.g., starvation, heat shock, or muscle atrophy) and upon drug treatments, the overall rate of protein degradation in cells may increase or decrease.

View Article and Find Full Text PDF

Proteasome inhibitors are used as research tools and to treat multiple myeloma, and proteasome activity is diminished in several neurodegenerative diseases. We therefore studied how cells compensate for proteasome inhibition. In 4 h, proteasome inhibitor treatment caused dramatic and selective induction of (but not other autophagy genes) and , which binds ubiquitinated proteins and GABARAPL1 on autophagosomes.

View Article and Find Full Text PDF

The proteasome inhibitors carfilzomib (Cfz) and bortezomib (Btz) are used successfully to treat multiple myeloma, but have not shown clinical efficacy in solid tumors. Here we show that clinically achievable inhibition of the β5 site of the proteasome by Cfz and Btz does not result in loss of viability of triple-negative breast cancer cell lines. We use site-specific inhibitors and CRISPR-mediated genetic inactivation of β1 and β2 to demonstrate that inhibiting a second site of the proteasome, particularly the β2 site, sensitizes cell lines to Btz and Cfz in vitro and in vivo.

View Article and Find Full Text PDF

An important adaptation of cells to proteasome inhibition is the induction of new proteasomes via the transcription factor Nrf1 [1,2], which is produced as a precursor bound to the endoplasmic reticulum (ER) through its amino terminus. Nrf1 was reported to require proteolytic processing to enter the nucleus [3]. Increased proteasome production is induced by low concentrations of proteasome inhibitors that reduce proteolysis by <50%.

View Article and Find Full Text PDF

Background: Proteasome inhibitors are widely used in the treatment of multiple myeloma and as research tools. Additionally, diminished proteasome function may contribute to neuronal dysfunction. In response to these inhibitors, cells enhance the expression of proteasome subunits by the transcription factor Nrf1.

View Article and Find Full Text PDF

Degradation rates of most proteins in eukaryotic cells are determined by their rates of ubiquitination. However, possible regulation of the proteasome's capacity to degrade ubiquitinated proteins has received little attention, although proteasome inhibitors are widely used in research and cancer treatment. We show here that mammalian 26S proteasomes have five associated ubiquitin ligases and that multiple proteasome subunits are ubiquitinated in cells, especially the ubiquitin receptor subunit, Rpn13.

View Article and Find Full Text PDF

Proteasomes must remove regulatory molecules and abnormal proteins throughout the cell, but how proteasomes can do so efficiently remains unclear. We have isolated a subunit of the Arp2/3 complex, Arc3, which binds proteasomes. When overexpressed, Arc3 rescues phenotypes associated with proteasome deficiencies; when its expression is repressed, proteasome deficiencies intensify.

View Article and Find Full Text PDF

eIF3 promotes translation initiation, but relatively little is known about its full range of activities in the cell. Here, we employed affinity purification and highly sensitive LC-MS/MS to decipher the fission yeast eIF3 interactome, which was found to contain 230 proteins. eIF3 assembles into a large supercomplex, the translasome, which contains elongation factors, tRNA synthetases, 40S and 60S ribosomal proteins, chaperones, and the proteasome.

View Article and Find Full Text PDF

Proper assembly of the 26 S proteasome is required to efficiently degrade polyubiquitinated proteins. Many proteasome subunits contain the proteasome-COP9-initiation factor (PCI) domain, thus raising the possibility that the PCI domain may play a role in mediating proteasome assembly. We have previously characterized the PCI protein Yin6, a fission yeast ortholog of the mammalian Int6 that has been implicated in breast oncogenesis, and demonstrated that it binds and regulates the assembly of the proteasome.

View Article and Find Full Text PDF