One of the main characteristics of optical imaging systems is spatial resolution, which is restricted by the diffraction limit to approximately half the wavelength of the incident light. Along with the recently developed classical super-resolution techniques, which aim at breaking the diffraction limit in classical systems, there is a class of quantum super-resolution techniques which leverage the non-classical nature of the optical signals radiated by quantum emitters, the so-called antibunching super-resolution microscopy. This approach can ensure a factor of [Formula: see text] improvement in the spatial resolution by measuring the n -th order autocorrelation function.
View Article and Find Full Text PDFMost of existing solar thermal technologies require highly concentrated solar power to operate in the temperature range 300-600 °C. Here, thin films of refractory plasmonic TiN cylindrical nanocavities manufactured via flexible and scalable process are presented. The fabricated TiN films show polarization-insensitive 95% broadband absorption in the visible and near-infrared spectral ranges and act as plasmonic "nanofurnaces" capable of reaching temperatures above 600 °C under moderately concentrated solar irradiation (∼20 Suns).
View Article and Find Full Text PDFActive control over the flow of light is highly desirable because of its applicability to information processing, telecommunication, and spectroscopic imaging. In this paper, by employing the tunability of carrier density in a 1 nm titanium nitride (TiN) film, we numerically demonstrate deep phase modulation (PM) in an electrically tunable gold strip/TiN film hybrid metasurface. A 337° PM is achieved at 1.
View Article and Find Full Text PDFThe field of thermoplasmonics has thrived in the past decades because it uniquely provides remotely controllable nanometer-scale heat sources that have augmented numerous technologies. Despite the extensive studies on steady-state plasmonic heating, the dynamic behavior of the plasmonic heaters in the nanosecond regime has remained largely unexplored, yet such a time scale is indeed essential for a broad range of applications such as photocatalysis, optical modulators, and detectors. Here, we use two distinct techniques based on the temperature-dependent surface reflectivity of materials, optical thermoreflectance imaging (OTI) and time-domain thermoreflectance (TDTR), to comprehensively investigate plasmonic heating in both spatial and temporal domains.
View Article and Find Full Text PDFLight beams with orbital angular momentum have significant potential to transform many areas of modern photonics from imaging to classical and quantum communication systems. We design and experimentally demonstrate an ultracompact array of nanowaveguides with a circular graded distribution of channel diameters that coverts a conventional laser beam into a vortex with an orbital angular momentum. The proposed nanoscale beam converter is likely to enable a new generation of on-chip or all-fiber structured light applications.
View Article and Find Full Text PDFOpposite directionality of the Poynting vector and the wave vector, an inherent property of negative index metamaterials (NIMs), was predicted to enable backward phase-matching condition for a second harmonic generation (SHG) process. As a result, such a nonlinear negative index slab acts as a nonlinear mirror. In this Letter, we predict that SHG with structured light carrying orbital angular momentum (OAM) and propagating in NIMs results in a possibility of generating a backward propagating beam with simultaneously doubled frequency, OAM, and reversed rotation direction of the wavefront.
View Article and Find Full Text PDFMicrowave beam transmission and manipulation in the atmosphere is an important but difficult task. One of the major challenges in transmitting and routing microwaves in air is unavoidable divergence because of diffraction. Here we introduce and design virtual hyperbolic metamaterials (VHMMs) formed by an array of plasma channels in air as a result of self-focusing of an intense laser pulse, and show that such structure can be used to manipulate microwave beams in air.
View Article and Find Full Text PDF