Drug transmission through the blood-brain barrier (BBB) is considered an arduous challenge for brain injury treatment following the return of spontaneous circulation after cardiac arrest (CA-ROSC). Inspired by the propensity of melanoma metastasis to the brain, B16F10 cell membranes are camouflaged on 2-methoxyestradiol (2ME2)-loaded reactive oxygen species (ROS)-triggered "Padlock" nanoparticles that are constructed by phenylboronic acid pinacol esters conjugated D-a-tocopheryl polyethylene glycol succinate (TPGS-PBAP). The biomimetic nanoparticles (BM@TP/2ME2) can be internalized, mainly mediated by the mutual recognition and interaction between CD44v6 expressed on B16F10 cell membranes and hyaluronic acid on cerebral vascular endothelial cells, and they responsively release 2ME2 by the oxidative stress microenvironment.
View Article and Find Full Text PDFThe γδT-cells recognize infected or transformed cells. However, unlike αβT-cells, γδT-cells are innate-like immune cells, with no major histocompatibility complex restriction requirements. γδT-cells are the main population of intestinal intraepithelial lymphocytes (IELs) and are associated with the antitumor immune response, particularly in colorectal cancer (CRC).
View Article and Find Full Text PDFNeutrophil extracellular traps (NETs) are web-like chromatin structures that are coated with granule proteins and trap microorganisms. However, NETs can damage the host tissue, contribute to the development of autoimmunity and lead to other dysfunctional outcomes in noninfectious diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), diabetes, atherosclerosis, vasculitis, thrombosis, and cancer. As a potential therapeutic approach, targeted ablation of neutrophil extracellular traps is of utmost importance for the treatment of NET-associated diseases.
View Article and Find Full Text PDFTh17/Treg imbalance is closely related to the occurrence and development of multiple sclerosis (MS), and the transdifferentiation of Th17 cells into Treg cells may contribute to the resolution of inflammation, presenting a therapeutic strategy for MS. To modulate this phenotypic shift in situ, a "Trojan horse"-like hybrid system, nanocapsule-coupled Th17 cells, is reported for MS treatment. Following intravenous injection into MS mice, the hybrid system efficiently transmigrates across the blood-brain barrier and homes to the inflamed MS niche.
View Article and Find Full Text PDFIEEE Trans Image Process
April 2015
Reflection symmetry detection receives increasing attentions in recent years. The state-of-the-art algorithms mainly use the matching of intensity-based features (such as the SIFT) within a single image to find symmetry axes. This paper proposes a novel approach by establishing the correspondence of locally affine invariant edge-based features, which are superior to the intensity based in the aspects that it is insensitive to illumination variations, and applicable to textureless objects.
View Article and Find Full Text PDFWe report on scanning-tunneling microscopy experiments in a charge-density wave (CDW) system allowing visually capturing and studying in detail the individual solitons corresponding to the self-trapping of just one electron. This "Amplitude Soliton" is marked by vanishing of the CDW amplitude and by the π shift of its phase. It might be the realization of the spinon--the long-sought particle (along with the holon) in the study of science of strongly correlated electronic systems.
View Article and Find Full Text PDFThe two charge-density wave (CDW) transitions in NbSe3 were investigated by scanning tunneling microscopy (STM) on an in situ cleaved (b, c) plane. The temperature dependence of first-order CDW satellite spots, obtained from the Fourier transform of the STM images, was measured between 5 and 140 K to extract the surface critical temperatures (T{s}). The low-T CDW transition occurs at T{2s}=70-75 K, more than 15 K above the bulk T{2b}=59 K while at exactly the same wave number.
View Article and Find Full Text PDFLow-temperature scanning tunneling spectroscopy under ultrahigh vacuum was used to study donor point defects located at the epitaxial surface of an In(0.53)Ga(0.47)As quantum well.
View Article and Find Full Text PDF