Background: The diagnosis and treatment of colorectal cancer (CRC), especially metastatic colorectal cancer (mCRC), is a major priority and research challenge. We screened for expression differences in the plasma exosomal proteomes of patients with mCRC, those with CRC, and healthy controls (HCs) to discover potential biomarkers for mCRC.
Methods: Plasma samples from five patients with mCRC, five patients with CRC, and five HCs were collected and processed to isolate exosomes by ultracentrifugation.
Understanding and achieving concurrent modulation of amplitude and frequency, particularly adjusting one quantity and simultaneously sustaining the other at an invariant level, are of paramount importance for complex biophysical systems, including the signal pathway where different frequency indicates different upstream signal yielding a certain downstream physiological function while different amplitude further determines different efficacy of a downstream output. However, such modulators with clearly described and universally valid mechanisms are still lacking. Here, we rigorously propose an easy-to-use control strategy containing only one or two steps, leveraging the nonlinearity in the modulated systems to decouple frequency and amplitude in a noncomputational manner.
View Article and Find Full Text PDF