Small and dense LDL cholesterol (sdLDL-C) and apolipoprotein B (ApoB) have important roles in promoting the development of atherosclerosis and are highly correlated with the degree of atherosclerosis. Several studies have found differences in anterior and posterior circulation strokes and in the mechanisms of their atherosclerosis, but little research has been done on the relationship of sdLDL-C and ApoB to atherosclerotic stenosis in anterior and posterior circulation strokes. We analyzed the correlation between sdLDL-C and ApoB and the degree of arterial stenosis in patients with posterior circulation stroke.
View Article and Find Full Text PDFDefect engineering is promising to tailor the physical properties of 2D semiconductors for function-oriented electronics and optoelectronics. Compared with the extensively studied 2D binary materials, the origin of defects and their influence on physical properties of 2D ternary semiconductors are not clarified. Here, the effect of defects on the electronic structure and optical properties of few-layer hexagonal Znln S is thoroughly studied via versatile spectroscopic tools in combination with theoretical calculations.
View Article and Find Full Text PDFIntegrating two-dimensional (2D) materials with ferroelectric thin films may result in unique characteristics and novel applications due to the coupling between their intrinsic characters. Here, we observed the ferroelectric resistive switching behavior in both graphene/BFO and MoS2/BFO heterojunctions, which stems from the modulation of contact barriers and depletion width at the hetero-interface induced by the ferroelectric polarization. Besides, the ferroelectric resistive switching behavior in both graphene/BFO and MoS2/BFO depends on the thicknesses of the corresponding 2D materials, because the thickness-dependent work function or conductivity of 2D materials could change the contact barrier heights and widths at the interface of 2D materials and ferroelectrics.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2017
ReS films are considered as a promising candidate for optoelectronic applications due to their direct band gap character and optical/electrical anisotropy. However, the direct band gap in a narrow spectrum and the low absorption of atomically thin flakes weaken the prospect for light-harvesting applications. Here, we developed an efficient approach to enhance the performance of a ReS-based phototransistor by coupling CdSe-CdS-ZnS core-shell quantum dots.
View Article and Find Full Text PDF