With advantages such as low cost, high stability, and ease of production, visible light photocatalytic C3N4 with a unique microscopic layered structure holds significant potential for development. However, its hydrogen production efficiency remains low due to the pronounced recombination of photo-generated charge carriers and limited surface reaction sites. Normally, the photocatalytic performance of C3N4 can be enhanced by loading noble metals with surface plasmon resonance.
View Article and Find Full Text PDFThe interlayer strategy has emerged as an effective approach for modulating the interfacial polymerization process and improving the permeability and selectivity of polyamide membranes. However, the underlying mechanisms by which charged interlayers influence the interfacial polymerization process remain inadequately understood. In this study, we utilized two distinct charged cellulose nanofibers, namely, carboxylated cellulose (⊖-CNF) and quaternized cellulose ([Formula: see text]-CNF), as interlayers to regulate the interfacial polymerization process.
View Article and Find Full Text PDFTo the best of our knowledge, the output performance of a self-Q-switched Tm:YAP laser has been controlled by adjusting the cavity length for the first time. By using a concise concave-flat cavity, a pulsed laser emitting at 1993 nm is produced without any additional modulation device. Under a stable self-Q-switched mode, the maximum average output power of 9.
View Article and Find Full Text PDFA nano-immunomodulator (R-NPT NP) comprising a tumor microenvironment (TME) activable resiquimod (R848) and a π-extended NIR-absorbing naphthophenanthrolinetetraone (NPT) has been engineered for spatiotemporal controlled photothermal immunotherapy. R-NPT NP demonstrated excellent photostability, while R848 promoted synergistic immunity as a toll-like receptor 7/8 (TLR7/8) agonist. Upon accumulation at the tumor site, R-NPT NP released R848 in response to redox metabolite glutathione (GSH), triggering dendritic cell (DC) activation.
View Article and Find Full Text PDFIt is particularly essential to analyze the complex crosslinked networks within polyamide membranes and their correlation with separation efficiency for the insightful tailoring of desalination membranes. However, using the degree of network crosslinking as a descriptor yields abnormal analytical outcomes and limited correlation with desalination performance due to imperfections in segmentation and calculation methods. Herein, we introduce a more rational parameter, denoted as harmonic amide bond density (HABD), to unravel the relationship between the crosslinked networks of polyamide membranes and their desalination performance.
View Article and Find Full Text PDFThe common clinical chemotherapy often brings serious side effects to patients, mainly due to the off-target and leakage of toxic drugs. However, this is fatal for some specific clinical tumors, such as brain tumors and neuroma. This study performs a drug-free approach by encapsulating black phosphorus (BP) and calcium peroxide (CaO) in liposomes with surface-modified triphenylphosphonium (BCLT) to develop mitochondria targeting calcification for cancer therapy without damaging normal cells.
View Article and Find Full Text PDFSingle-atom catalysts show excellent catalytic performance because of their coordination environments and electronic configurations. However, controllable regulation of single-atom permutations still faces challenges. Herein, we demonstrate that a polarization electric field regulates single atom permutations and forms periodic one-dimensional Au single-atom arrays on ferroelectric BiTiO nanosheets.
View Article and Find Full Text PDFHypertension, diabetes, and hyperlipidemia significantly impact chronic diseases and mortality. Magnesium is an essential nutrient for maintaining critical physiological functions, and magnesium deficiency is often associated with adverse health outcomes. In a cross-sectional study of US adults, we aimed to explore dietary magnesium intake and its association with the prevalence of hypertension, diabetes, and hyperlipidemia in US adults over 20 years of age in NHANES 2007-2018.
View Article and Find Full Text PDFAdverse childhood experiences (ACEs) are associated with an increased risk of diabetes in adulthood. However, the potential mediational role of sleep duration in this association is unclear. A total of 116, 014 participants in the United States, from the Behavioral Risk Factor Surveillance System (BRFSS) survey in 2020 were involved in the study.
View Article and Find Full Text PDFBiomaterials
February 2023
Mitochondria play critical roles in the regulation of the proliferation and apoptosis of cancerous cells. Targeted induction of mitochondrial dysfunction in cancer cells by multifunctional nanosystems for cancer treatment has attracted increasing attention in the past few years. Numerous therapeutic nanosystems have been designed for precise tumor therapy by inducing mitochondrial dysfunction, including reducing adenosine triphosphate, breaking redox homeostasis, inhibiting glycolysis, regulating proteins, membrane potential depolarization, mtDNA damage, mitophagy dysregulation and so on.
View Article and Find Full Text PDFMost patients are at high risk of thrombosis during cancer treatment. However, the major discrepancy in the therapeutic mechanisms and microenvironment between tumors and thrombosis makes it challenging for a panacea to treat cancer while being able to eliminate the risk of thrombosis. Herein, we developed a biomimetic MnOx/AgS nanoflower platform with platelet membrane modification (MnOx@AgS@hirudin@platelet membrane: MAHP) for the long-term release of anticoagulant drugs to treat thrombosis together with tumor therapy.
View Article and Find Full Text PDFDue to the high recurrence rate and mortality of venous thrombosis, there is an urgent need for research on antithrombotic strategies. Because of the short half-life, poor targeting capabilities, bleeding complications, and neurotoxic effects of conventional pharmacological thrombolysis methods, it is essential to develop an alternative strategy to noninvasive thrombolysis and decrease the recurrence rate of venous thrombosis. A platelet-mimetic porphyrin-based covalent organic framework-engineered melanin nanoplatform, to target delivery of hirudin to the vein thrombus site for noninvasive thrombolysis and effective anticoagulation, is first proposed.
View Article and Find Full Text PDFWhile checkpoint blockade immunotherapy as a promising clinical modality has revolutionized cancer treatment, it is of benefit to only a subset of patients because of the tumor immunosuppressive microenvironment. Herein, we report that the specified delivery of vitamin C at the tumor site by responsive lipid nanoparticles can efficiently induce oxidative toxicity and the polarization of M1 macrophages, promoting the infiltration of activating cytotoxic T lymphocytes in the tumor microenvironment for intensive immune checkpoint blocking therapy. Both and assays demonstrate successful vitamin C-induced polarization of M2 macrophages to M1 macrophages.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2022
The second near-infrared (NIR-II)-induced photothermal therapy (PTT) has attracted a great deal of attention in recent years due to its non-invasiveness and because it uses less energy. However, the penetration of photothermal agents into solid tumors is seriously impeded by the dense-tumor extracellular matrix (ECM) containing cross-linked hyaluronic acid (HA), thereby compromising the ultimate therapeutic effects. Herein, acid-labile metal-organic frameworks were employed as nanocarriers to efficiently mineralize hyaluronidase (HAase) and encapsulate AgS nanodots by a one-pot approach under mild conditions.
View Article and Find Full Text PDFThe proposal of the aggregation-induced emission (AIE) effect shines a light on the practical application of luminescent materials. The AIE-active luminescence microgels (TPEC MGs) with photo-induced color-changing behavior were developed by integrating positively charged AIE luminogens (AIEgens) into the anionic network of microgels, where AIEgens of TPEC were obtained from the quaternization reaction between tetra-(4-pyridylphenyl)ethylene (TPE-4Py) and 7-(6-bromohexyloxy)-coumarin. The aqueous suspensions of TPEC MGs exhibit a significant AIE effect following the enhancement of quantum yield.
View Article and Find Full Text PDFFerroptosis, a newfound non-apoptotic cell death pathway that is iron- and reactive oxygen species (ROS)-dependent, has shown a promise for tumor treatment. However, engineering ferroptosis inducers with sufficient hydrogen peroxide (HO) and iron supplying capacity remains a great challenge. To address this issue, herein, we report a powerful nanoreactor by modifying MnO, glucose oxidase, and polyethylene glycol on iron-based metal-organic framework nanoparticles for disrupting redox and iron metabolism homeostasis, directly providing the Fenton reaction-independent downstream ferroptosis for tumor therapy.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2021
Graphitic carbon nitride (g-CN) has been widely studied as a photocatalyst for the splitting of water to produce hydrogen. In order to solve the problems of limited number of active sites and serious recombination rate of charge-carriers, noble metals are needed as cocatalysts. Here, we selectively anchored Pt nanoparticles (NPs) to specific nitrogen species on the surface of g-CN via heat treatment in argon-hydrogen gas mixture, thus achieving g-CN photocatalyst anchored by highly dispersed homogeneous Pt NPs with the co-existed metallic Pt and Pt species.
View Article and Find Full Text PDFChemodynamic therapy (CDT) destroys cancer cells by converting HO or O into reactive oxygen species (ROS), but its therapeutic efficacy is restricted by the antioxidant capacity of tumor. Previous solutions focused on strengthening the nanodrugs with the ability to increase ROS production or weaken the antioxidant capacity of cancer cells. Conversely, we here develop a mild nanodrug with negligible side effects.
View Article and Find Full Text PDFAdv Healthc Mater
January 2022
Rapid development of nanotechnology provides promising strategies in biomedicine, especially in tumor therapy. In particular, the cellular uptake of nanosystems is not only a basic premise to realize various biomedical applications, but also a fatal factor for determining the final therapeutic effect. Thus, a systematic and comprehensive summary is necessary to overview the recent research progress on the improvement of nanosystem cellular uptake for cancer treatment.
View Article and Find Full Text PDFOne of the main challenges for tumor vascular infarction in combating cancer lies in failing to produce sustained complete thrombosis. Inspired by the capability of vascular infarction in blocking the delivery of oxygen to aggravate tumor hypoxia, the performance of selective tumor thrombus inducing hypoxia activation therapy to improve the therapeutic index of coagulation-based tumor therapy is presented. By encapsulating coagulation-inducing protease thrombin and a hypoxia-activated prodrug (HAP) tirapazamine into metal-organic framework nanoparticles with a tumor-homing ligand, the obtained nanoplatform selectively activates platelet aggregation at the tumor to induce thrombosis and vascular obstruction therapy by the exposed thrombin.
View Article and Find Full Text PDFThe deepening crisis of freshwater resources has been driving the further development of new types of membrane-based desalination technologies represented by nanofiltration membranes. Solving the existing trade-off limitation on enhancing the water permeance and the rejection of salts is currently one of the most concerned research interests. Here, a facile and scalable approach is proposed to tune the interfacial polymerization by constructing a calcium alginate hydrogel layer on the porous substrates.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2020
Mussel-inspired poly(catecholamine) coatings from polydopamine (PDA) have been widely studied to design functional coatings for various materials. The chemical precursor of dopamine (DA), levodopa (l-DOPA, 3,4-dihydroxyphenyl-l-alanine), is known as the main element of mussel adhesive foot protein, but it is relatively hard to be constructed into a desirable coating on a given material surface under the same conditions as those for DA. Herein, we report a codeposition strategy to achieve the rapid fabrication of mussel-inspired coatings by l-DOPAwith polyethyleneimine (PEI) and to deeply understand the formation mechanism of those aggregates and coatings from l-DOPA/PEI.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2020
Photothermal therapy (PTT) is considered an alternative for oncotherapy because it has less invasive damage to normal tissues than other methods, particularly in second near-infrared (NIR-II) PTT (1000-1350 nm) because of deeper biological tissue penetration, lower photon scattering, and higher maximum permissible exposure (1.0 W cm). However, for achieving a higher therapeutic effect, the delivery of large amounts of NIR-sensitive agents has been pursued, which in turn enormously increases damage to normal cells.
View Article and Find Full Text PDFA thermal-sensitive "jelly" was used to control the diffusion of a diamine monomer for synthesizing polyamide free-standing nanofilms with an adjustable thickness of 5-35 nm. The reduced reaction rate of the interfacial polymerization at the hexane-"jelly" interface made the synthesized nanofilms show high water permeation flux and suitable salt rejection, and they also have highly negative surface charges and fairly smooth surfaces.
View Article and Find Full Text PDFDue to the high energy efficiency and a wide range of potential applications in daily life, bistable electrochromic devices (BECDs) have gained extensive attention in recent years. However, poor bistability and slow response rate are the main barriers, which restrict the development of BECDs. Herein, a transparent multidimensional electrode with indium tin oxide (ITO) nanofibers and gold nanoparticles was fabricated to improve both the bistability and responsiveness of devices.
View Article and Find Full Text PDF