Unlabelled: Enzymatic therapy with nicotine-degrading enzyme is a new strategy in treating nicotine addiction, which can reduce nicotine concentrations and weaken withdrawal in the rat model. However, when O is used as the electron acceptor, no satisfactory performance has been achieved with one of the most commonly studied and efficient nicotine-catabolizing enzymes, NicA2. To obtain more efficient nicotine-degrading enzyme, we rationally designed and engineered a flavoenzyme Pnao, which shares high structural similarity with NicA2 (RMSD = 1.
View Article and Find Full Text PDFEnzymatic therapy with nicotine-degrading enzyme is a new strategy in treating nicotine addiction, which can reduce nicotine concentrations and weaken withdrawal in the rat model. However, when O is used as the electron acceptor, no satisfactory performance has been achieved with one of the most commonly studied and efficient nicotine-catabolizing enzymes, NicA2. To obtain more efficient nicotine-degrading enzyme, we rationally designed and engineered a flavoenzyme Pnao, which shares high structural similarity with NicA2 (RMSD = 1.
View Article and Find Full Text PDFThe remediation of polluted sites containing multiple contaminants like nicotine and heavy metals poses significant challenges, due to detrimental effects like cell death. In this study, we isolated a new strain Pseudomonas sp. NBB capable of efficiently degrading nicotine even in high level of heavy metals.
View Article and Find Full Text PDFAlthough the accomplishments of microbiome engineering highlight its significance for the targeted manipulation of microbial communities, knowledge and technical gaps still limit the applications of microbiome engineering in biotechnology, especially for environmental use. Addressing the environmental challenges of refractory pollutants and fluctuating environmental conditions requires an adequate understanding of the theoretical achievements and practical applications of microbiome engineering. Here, we review recent cutting-edge studies on microbiome engineering strategies and their classical applications in bioremediation.
View Article and Find Full Text PDF