Publications by authors named "Zhaoyong Xi"

HIV-1 reverse transcriptase (RT) is a heterodimer comprised p66 and p51 subunits (p66/p51). Several single amino acid substitutions in RT, including L289K, decrease p66/p51 dimer affinity, and reduce enzymatic functioning. Here, small-angle X-ray scattering (SAXS) with proton paramagnetic relaxation enhancement (PRE), F site-specific NMR, and size exclusion chromatography (SEC) were performed for the p66 monomer with the L289K mutation, p66 .

View Article and Find Full Text PDF

Among the immunoglobulin domains, the CH2 domain has the lowest thermal stability, which also depends on amino acid sequence and buffer conditions. To further identify factors that influence CH2 folding and stability, we characterized the domain in the reduced form using differential scanning fluorimetry and nuclear magnetic resonance. We show that the CH2 domain can fold, similarly to the disulfide-bridged form, without forming a disulfide-bridge, even though the protein contains two Cys residues.

View Article and Find Full Text PDF

NMR studies of large proteins, over 100 kDa, in solution are technically challenging and, therefore, of considerable interest in the biophysics field. The challenge arises because the molecular tumbling of a protein in solution considerably slows as molecular mass increases, reducing the ability to detect resonances. In fact, the typical H-C or H-N correlation spectrum of a large protein, using a C- or N-uniformly labeled protein, shows severe line-broadening and signal overlap.

View Article and Find Full Text PDF

The ribonuclease H (RNH) activity of HIV-1 reverse transcriptase (RT) is essential for viral replication and can be a target for drug development. Yet, no RNH inhibitor to date has substantial antiviral activity to allow advancement into clinical development. Herein, we describe our characterization of the detailed binding mechanisms of RNH active-site inhibitors, YLC2-155 and ZW566, that bind to the RNH domain through divalent metal ions, using NMR, molecular docking, and quantum mechanical calculations.

View Article and Find Full Text PDF

HIV-1 reverse transcriptase (RT) is translated as part of the Gag-Pol polyprotein that is proteolytically processed by HIV-1 protease (PR) to finally become a mature heterodimer, composed of a p66 and a p66-derived 51-kDa subunit, p51. Our previous work suggested that tRNA binding to p66/p66 introduces conformational changes in the ribonuclease (RNH) domain of RT that facilitate efficient cleavage of p66 to p51 by PR. In this study, we characterized the conformational changes in the RNH domain of p66/p66 imparted by tRNA using NMR.

View Article and Find Full Text PDF

Metal-protein interactions are not necessarily tight in many transient biological processes, such as cellular signaling, enzyme regulation, and molecular recognition. Here, we analyzed the binding thermodynamics and characterized the structural effect of divalent metal ions, i.e.

View Article and Find Full Text PDF

Cisplatin is an anticancer drug widely used in clinics; it induces the apoptosis of cancer cells by targeting DNA. However, its interaction with proteins has been found to be crucial in modulating the pre and post-target activity. Nuclear DNA is tightly assembled with histone proteins to form nucleosomes in chromatin; this can impede the drug to access DNA.

View Article and Find Full Text PDF

Non-nucleoside inhibitors of human immunodeficiency virus type 1 reverse transcriptase (RT), NNRTIs, which bind to the p66/p51 heterodimeric RT, also interact with the p66/p66 homodimer, whose structure is unknown. F nuclear magnetic resonance of a single 4-trifluoromethylphenylalanine (tfmF) residue, incorporated into the NNRTI binding pocket of the p66/p66 homodimer at position 181, was used to investigate NNRTI binding. In the NNRTI-bound homodimer complex, two different F signals are observed, with the resonance frequencies matching those of the NNRTI-bound p66/p51 heterodimer spectra, in which the individual p66-subunit or p51-subunit were labeled with tfmF at positions 181.

View Article and Find Full Text PDF

The RNase H (RNH) function of HIV-1 reverse transcriptase (RT) plays an essential part in the viral life cycle. We report the characterization of YLC2-155, a 2-hydroxyisoquinoline-1,3-dione (HID)-based active-site RNH inhibitor. YLC2-155 inhibits both polymerase (50% inhibitory concentration [IC] = 2.

View Article and Find Full Text PDF

The cellular copper level is strictly regulated since excessive copper is harmful to cells. It has been proposed that the expression of copper transport protein hCtr1 is transcriptionally regulated by specificity protein 1 (Sp1) in response to the cellular copper level. However, it is not known how Sp1, a zinc-finger-protein (ZFP), can sense copper ions in cells.

View Article and Find Full Text PDF

A cataract is a pathological condition characterized by the clouding of the normally clear eye lens brought about by deposition of crystallin proteins in the lens fiber cells. These protein aggregates reduce visual acuity by scattering or blocking incoming light. Chemical damage to proteins of the crystallin family, accumulated over a lifetime, leads to age-related cataract, whereas inherited mutations are associated with congenital or early-onset cataract.

View Article and Find Full Text PDF

βγ-Crystallins are long-lived eye lens proteins that are crucial for lens transparency and refractive power. Each βγ-crystallin comprises two homologous domains, which are connected by a short linker. γ-Crystallins are monomeric, while β-crystallins crystallize as dimers and multimers.

View Article and Find Full Text PDF

The copper chaperone Cox17 (cytochrome c oxidase copper chaperone) has been shown to facilitate the delivery of cisplatin to mitochondria, which contributes to the overall cytotoxicity of the drug [Zhao et al. (2014) Chem. Commun.

View Article and Find Full Text PDF

Arsenic is a biologically interesting element with both antitumor and carcinogenic effects. Zinc finger proteins (ZFPs) have been confirmed to be the cellular targets of arsenite; however, arsenite inhibits ZFPs much less efficiently in vitro than in vivo. The molecular mechanism of this difference is unknown.

View Article and Find Full Text PDF

Cox17 facilitates the platinum accumulation in mitochondria, which contributes to the overall cytotoxicity of cisplatin.

View Article and Find Full Text PDF

The transport system of platinum-based anticancer agents is crucial for drug sensitivity. Increasing evidence indicates that the copper transport system is also involved in the cellular influx and efflux of platinum drugs. The copper chaperone Atox1 has been shown to bind to cisplatin in vitro and in cells.

View Article and Find Full Text PDF

Cu(I) binding promotes the platination of Atox1, although cisplatin binds to the copper coordination sites. In addition, Cu(I) binding enhances the competition of Atox1 with DTT in the reaction of cisplatin. These results indicate that cuprous ions could regulate the cellular trafficking of cisplatin.

View Article and Find Full Text PDF

The human copper chaperone Atox1 plays a central role in the transport of copper in cells. It has been reported that the conserved residue Lys60 contributes to the heterocomplex stability of Atox1 with its target protein ATPase, and that the K60A mutation could diminish the copper transfer. In this work, we carried out the structure determination and dynamic analysis of Atox1 with the K60A mutation in order to elucidate the role of the conserved residue Lys60 in the copper transport.

View Article and Find Full Text PDF

Human copper transporter 1 (hCTR1) facilitates the cellular uptake of cisplatin, and the extracellular N-terminal domain has been proven to coordinate to platinum drugs. It has been reported that the intracellular C-terminal motif is crucial for the function of hCTR1 in cisplatin influx. In this work, we conduct reactions of the intracellular motif with platinum drugs.

View Article and Find Full Text PDF

Iron is an essential nutrient for most bacterial pathogens, but is restricted by the host immune system. Mycobacterium tuberculosis (Mtb) utilizes two classes of small molecules, mycobactins and carboxymycobactins, to capture iron from the human host. Here, we show that an Mtb mutant lacking the mmpS4 and mmpS5 genes did not grow under low iron conditions.

View Article and Find Full Text PDF

Site-specific ¹⁹F chemical shift and side chain relaxation analysis can be applied on large size proteins. Here, one-dimensional ¹⁹F spectra and T₁, T₂ relaxation data were acquired on a SH3 domain in aqueous buffer containing 60% glycerol, and a nine-transmembrane helices membrane protein diacyl-glycerol kinase (DAGK) in dodecyl phosphochoine (DPC) micelles. The high quality of the data indicates that this method can be applied to site-specifically analyze side chain internal mobility of membrane proteins or large size proteins.

View Article and Find Full Text PDF

SH3 is a ubiquitous domain mediating protein-protein interactions. Recent solution NMR structural studies have shown that a proline-rich peptide is capable of binding to the human vinexin SH3 domain. Here, an orthogonal amber tRNA/tRNA synthetase pair for (15)N/(19)F-trifluoromethyl-phenylalanine ((15)N/(19)F-tfmF) has been applied to achieve site-specific labeling of SH3 at three different sites.

View Article and Find Full Text PDF

Zinc has been found in the crystal structures of inteins and the zinc ion can inhibit intein splicing both in vitro and in vivo. The interactions between metal ions and three minimized recA inteins have been studied in this work. Isothermal titration calorimetry (ITC) results show that the zinc binding affinity to three inteins is in the order of DeltaI-SM > DeltaDeltaI(hh)-SM approximately DeltaDeltaI(hh)-CM, but is much weaker than to EDTA.

View Article and Find Full Text PDF