Publications by authors named "Zhaoyi Yin"

Efficient separation of photogenerated charges at the surface of photocatalysts is vital for achieving high photocatalytic activity. Here, a Bi/BiNbOCl heterostructure piezo-photocatalyst with an amorphous/crystalline interface (acBi/BNC) is prepared by in situ reduction using BiNbOCl as a self-sacrificial template. This ingenious design synergistically utilizes the advantages of the amorphous/crystalline interface structure, localized surface plasmon resonance effect, and piezoelectric field.

View Article and Find Full Text PDF

Designing and optimizing photocatalysts to maximize the use of sunlight and achieve fast charge transport remains a goal of photocatalysis technology. Herein, a full-spectrum-response BiOBr:Er@BiO core-shell S-scheme heterojunction is designed with [Bi─O] tetrahedral sharing using upconversion (UC) functionality, photothermal effects, and interfacial engineering. The UC function of Er and plasmon resonance effect of BiO greatly improves the utilization of sunlight.

View Article and Find Full Text PDF

Immunomodulation is essential for implants to regulate tissue regeneration, while bioelectricity plays a fundamental role in regulating immune activities. Under natural preferences, the bone matrix electrical microenvironment is heterogeneous in the nanoscale, which provides fundamental electrical cues to regulate bone immunity and regenerative repair. However, remodeling bone nanoscale heterogeneous electrical microenvironment remains a challenge, and the underlying immune modulation mechanism remains to be explored.

View Article and Find Full Text PDF

Insufficient vascularization is a primary cause of bone implantation failure. The management of energy metabolism is crucial for the achievement of vascularized osseointegration. In light of the bone semiconductor property and the electric property of semiconductor heterojunctions, a three-dimensional semiconductor heterojunction network (3D-NTBH) implant has been devised with the objective of regulating cellular energy metabolism, thereby driving angiogenesis for bone regeneration.

View Article and Find Full Text PDF

Heterojunctions are widely used in energy conversion, environmental remediation, and photodetection, but have not been fully explored in regenerative medicine. In particular, piezoelectric heterojunctions have never been examined in tissue regeneration. Here the development of piezoelectric heterojunctions is shown to promote bone regeneration while eradicating pathogenic bacteria through light-cellular force-electric coupling.

View Article and Find Full Text PDF

Exploring strategies to improve the near-infrared response of photocatalysts is an urgent challenge that can be overcome by utilizing upconversion (UC) luminescence to enhance photocatalysis. This paper reports the fabrication of a ZnO/BiTiOF:Yb, Er (ZnO/BTOFYE) Z-scheme heterojunction based on a BiTiOF:Yb, Er (BTOFYE) UC photocatalyst via electrostatic self-assembly. Fermi energy difference at the interface of BTOFYE and ZnO generates a strong internal electric field (IEF) in the Z-scheme heterojunction, offering a novel charge transfer mode that promotes carrier transfer and separation while retaining the strong redox capability.

View Article and Find Full Text PDF

Combining the detection of tumor protein markers with the capture of circulating tumor cells (CTCs) represents an ultra-promising approach for early tumor detection. However, current methodologies have not yet achieved the necessary low detection limits and efficient capture. Here, a novel polypyrrole nanotentacles sensing platform featuring anemone-like structures capable of simultaneously detecting protein biomarkers and capturing CTCs is introduced.

View Article and Find Full Text PDF

Being the most common cause of implant failure, peri-implantitis is defined as a pathological condition associated with the occurrence of peri-implant plaque, characterized by peri-implant mucosal inflammation and progressive loss of the supporting bone tissue attributed to the persistence of pro-inflammatory cytokines. Docosahexaenoic acid (DHA), which is a type of omega-3 polyunsaturated fatty acid, is generally used for the treatment of many inflammatory diseases. However, a suitable form for dosing and its therapeutic effect on peri-implantitis remain unclear.

View Article and Find Full Text PDF

The coupling between piezoelectricity and photoexcitation is an attractive method for improving the photocatalytic efficiency of semiconductors. Herein, a novel layered perovskite photocatalyst BiNdOCl (BNOC) has been successfully prepared solid-state reaction. PFM results confirm that BNOC has piezoelectricity, and its piezo-photocatalytic degradation performance was evaluated for the first time using tetracycline hydrochloride (TH) as a pollutant model.

View Article and Find Full Text PDF

Guided bone regeneration is widely applied in clinical practice to treat alveolar bone defects. However, the rate of healing of severe alveolar bone defects is slow, and there is a high incidence of soft tissue wound dehiscence. In this study, we propose a barrier membrane with a Janus electro-microenvironment (JEM) to achieve side-selective bone regeneration and soft tissue healing.

View Article and Find Full Text PDF

Rare earth (RE) ions combined with two-dimensional (2D) semiconductors can exhibit unexpected optical properties. However, fluorescence quenching has always been inevitable due to defects associated with the synthesis and doping of 2D materials. In this work, we reported an efficient upconversion (UC) enhancement of Er doped BiOCl nanosheets, utilizing a defect engineering strategy conversely rather than eliminating defects.

View Article and Find Full Text PDF

Objectives: Ferroptosis is associated with multiple inflammatory diseases. Periodontitis is an inflammatory disease mainly caused by oral opportunistic pathogens. However, the ferroptosis-periodontitis relationship has not been thoroughly described.

View Article and Find Full Text PDF

In recent years, dental implantation has become the preferred protocol for restoring dentition defects. Being the direct contact between implant and bone interface, osseointegration is the basis for implant exerting physiological functions. Nevertheless, biological complications such as insufficient bone volume, poor osseointegration, and postoperative infection can lead to implant failure.

View Article and Find Full Text PDF

For better use of solar energy, the development of efficient broadband photocatalyst has attracted extraordinary attention. In this study, a ternary composite consisting of SrLaF:Yb,Er upconversion (UC) nanocrystals and Bi nanoparticles loaded BiOBr nanosheets with oxygen vacancies (OVs, SLFBB) was designed and synthesized by multistep solvent-thermal method. Mechanisms of in-situ formation of Bi nanoparticles and OVs in BiOBr/SrLaF:Yb,Er composites (SFLB) are clarified.

View Article and Find Full Text PDF

Low luminescence efficiency of rare-earth ions dopedupconversion (UC) nanomaterials is still a major limitation for their applications.Here, based on bismuth oxychloride nanosheets that show efficient photocarriers separation due to combining spontaneous polarization and layered semiconductor, we report a new carbon heterovalent doping strategy for efficient UC luminescence enhancement by suppressing the intermediate excited states of Er ions. The first-principles calculations and photoelectrochemical characterizations provide evidences that the replacement of C ions for Cl strengthen the spontaneous polarization and inter electric field (IEF) of bismuth oxychloride nanosheets, which further improve the photocarriers separation efficiency.

View Article and Find Full Text PDF

Here, we report that a reduction in scale leads to an enhancement in the photoluminescence (PL) of Eu doped BiOCl nanosheets, challenging the long-standing notion that PL is inevitably suppressed at a scale of tens of nanometers. The oriented depolarization effect of layered ferroelectrics was utilized for the first time to improve the PL efficiency of lanthanide doped nanomaterials. The probing effect of the electric dipole transitions of the Eu ions and their PL measurements provides evidence that the depolarization field and the PL of Eu ions increase synchronously as the thickness of the BiOCl single-crystalline nanosheets decreases from hundreds to tens of nanometers.

View Article and Find Full Text PDF

Ti implants are good candidates in bone repair. However, how to promote bone formation on their surface and their consequent perfect integration with the surrounding tissue is still a challenge. To overcome such challenge, we propose to form Ti nanorods on their surface to promote the new bone formation around the implants.

View Article and Find Full Text PDF

Abstract In the present paper, we reported the luminescence properties of BiOCl:Dy(3+) and BiOCl:Dy(3+), Li+ phosphor synthesized by conventional solid state method. X-ray diffraction (XRD) and excitation and emission spectroscopy were used to characterize the samples. Results show that pure tetragonal BiOCl:Dy(3+) crystals can be synthesized successfully at 500 °C, and Li+ ion dopant improves the crystallinity of samples furtherly.

View Article and Find Full Text PDF

As lanthanide doped upconverting host, two dimensional (2D) nanostructure materials have remarkable advantages compare with the bulk materials, but excellent 2D upconversion nanohost is still few up to date. In this work, Yb(3+)/Ho(3+) co-doped BiOBr nanosheets have been successfully prepared via a facile hydrothermal method, which were characterized by X-ray diffraction, transmission electron microscopy, Atomic Force Microscope, Raman spectra, Fourier transform infrared absorption and UC luminescence spectra. Under excitation at 980 nm, bright green UC emission centered at 550 nm accompanied with weak red (663 nm) and near infrared (NIR) UC emissions (760 nm) were observed.

View Article and Find Full Text PDF

Citric acid, a molecule present in fresh bone, was introduced into template-free electrochemical polymerization to form biocompatible coating made of polypyrrole (PPy) nano-cones on bone implants. It served not only as a dopant to tune the nano-architectures but also as a promoter to enhance bioactivity of the PPy-coated implants.

View Article and Find Full Text PDF

One-dimensional conducting polymer nanostructure arrays could provide short ion transport paths, thus delivering superior chemical/physical performance and having large potential as intelligent switching materials. In this work, in situ electrochemical atomic force microscopy is employed to monitor the self-assembly of conducting polypyrrole nanotube arrays in template-free electrochemical polymerization. The specific spreading behavior of pyrrole micelles on the conductive substrate is important to large-area self-assembly of conducting polypyrrole nanotube arrays and the insight into self-assembly of conducting polypyrrole nanotube arrays is discussed.

View Article and Find Full Text PDF

To further enhance the biological properties of acid-etched microrough titanium surfaces, titania nanotextured thin films were produced by simple chemical oxidation, without significantly altering the existing topographical and roughness features. The nanotextured layers on titanium surfaces can be controllably varied by tuning the oxidation duration time. The oxidation treatment significantly reduced water contact angles and increased the surface energy compared to the surfaces prior to oxidation.

View Article and Find Full Text PDF

Nd3+ doped alpha-NaYF4 nanocrystals with size of about 15 nm were successfully synthesized through hydrothermal method. Nearly pure near-infrared to near-infrared (NIR-to-NIR) luminescence can be realized. Moreover, the excitation and the emission at 880 and 1060 nm, respectively, are away from the visible region.

View Article and Find Full Text PDF

Upconversion luminescence properties of Yb-Tb codoped Bi4Ti3O12 inverse opals have been investigated. The results show that the upconversion emission can be modulated by the photonic band gap. More significantly, in the upconversion inverse opals, the excited-state absorption of Tb3+ is greatly enhanced by the suppression of upconversion spontaneous emissions of the intermediate excited state, and thus the short wavelength upconversion emission from Tb3+ is considerably improved.

View Article and Find Full Text PDF

Yb, Er co-doped Y2SiO5 inverse opal photonic crystals with three-dimensionally ordered macroporous were fabricated using polystyrene colloidal crystals as the template. Under 980 nm excitation, the effect of the photonic stopband on the upconversion luminescence of Er3+ ions has been investigated in the Y2SiO5:Yb, Er inverse opals. Significant suppression of the green or red UC emissions was detected if the photonic band-gap overlaps with the Er3+ ions emission band.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session6uolvg3mdf4c8rtpsjdpmgh2hurcgr41): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once