Cadmium pollution in farmland has become a global environmental problem, threatening ecological security and human health. Biochar is effective in remediation of soil pollution. However, high concentrations of biochar can inhibit plant growth, and low concentrations of biochar have limited mitigation effect on cadmium toxicity.
View Article and Find Full Text PDFCadmium pollution in agricultural soil is a great threat to crop growth and human health. In this research, with 1%, 3% and 5% biochar applied to control soil cadmium pollution, melon was selected to be the experimental object for physiological detection and transcriptome analysis, through which we explored the mechanism of cadmium tolerance and biochar mitigating cadmium stress in muskmelon. Three set concentrations of biochar have a mitigative effect on muskmelon cadmium stress, and 5% biochar and 3% biochar respectively have the best and the worst alleviative effect.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
April 2023
Cadmium is toxic to plants. The accumulation of cadmium in edible plants such as muskmelon may affect the safe production of crops and result in human health problem. Thus effective measures are urgently needed for soil remediation.
View Article and Find Full Text PDFIntroduction: Flesh color is an important trait in watermelon (Citrullus lanatus L.). Several flesh color genes have been identified in watermelon; however, the inheritance of and the molecular basis underlying the white flesh trait remain largely unknown.
View Article and Find Full Text PDFWater desalination using membrane technology is one of the main technologies to resolve water pollution and scarcity issues. In the membrane treatment process, mineral scale deposition and fouling is a severe challenge that can lead to filtration efficiency decrease, permeate quality compromise, and even membrane damage. Multiple methods have been developed to resolve this problem, such as scale inhibitor addition, product recovery ratio adjustment, periodic membrane surface flushing.
View Article and Find Full Text PDFMuskmelon pedicel is the fruit stalk of muskmelon and one of the traditional Chinese medicines, which can be used to treat jaundice, diabetes and neuropathy. However, in recent years, agricultural soil heavy metal cadmium (Cd) pollution has become serious, coupled with the imperfect sales management of herbal medicine, increasing the potential health risk of contaminated herbal medicine in the human body. In this paper, the comprehensive quality of contaminated muskmelon was tested.
View Article and Find Full Text PDFTotal cadmium (Cd) cannot be used to accurately assess the ecological risk of Cd pollution in soil. Currently there is no universally recognized method to evaluate Cd bioavailability in soil. In this study, chemical extraction methods, diffusive gradients in thin films (DGT) and bioindicator methods were used to evaluate Cd bioavailability in soils with the same properties but different aging times.
View Article and Find Full Text PDFBackground: Due to the severe cadmium (Cd) pollution of farmland soil, effective measures need to be taken to reduce the Cd content in agricultural products. In this study, we added α-FeO nanoparticles (NPs) and biochar into Cd-contaminated soil to investigate physiological responses of muskmelon in the whole life cycle.
Results: The results showed that Cd caused adverse impacts on muskmelon (Cucumis melo) plants.
Soil contamination with cadmium (Cd) has become a serious problem, adversely affecting food safety and human health. Effective methods are urgently needed to alleviate toxicity of Cd in plants. In this study, a nine-week continuous pot experiments was conducted to explore the effectiveness of the different nano iron oxide (α-FeO, γ-FeO, FeO) alone and combined with biochar in muskmelon grown on a Cd-contaminated soil.
View Article and Find Full Text PDFWatermelon (Citrullus lanatus) is one of the major cucurbit crop that cultivated all over the world. Adaptability and flowering time are important agronomic characteristics that influence the quality and yield of watermelon, however, the molecular basis underlying these traits were still unclear. In this study, we identified 166, 182, 178, and 279 flowering genes in watermelon, melon, cucumber and pumpkin, respectively, and found that a lot of genes in the photoperiodic, autonomous, and vernalization pathways were absence in the four cucurbits.
View Article and Find Full Text PDFIron fertilizers are worthy to be studied due to alleviate the Fe deficiency. Different forms of iron oxide nanoparticles are selected to better understand possible particle applications as an Fe source for crop plants. In this study, we assessed the different effects of γ-FeO and FeO NPs on the physiology and fruit quality of muskmelon plants in a pot experiment for five weeks.
View Article and Find Full Text PDFWith the rapid development of nanotechnology, developing nano iron fertilizer is an important strategy to alleviate Fe deficiency and elevate Fe fertilization effect in agricultural applications. In this study, watermelon seedlings were grown in soil amended with iron oxide nanoparticles (γ-FeO NPs) at different concentrations (0, 20, 50, 100 mg/L). The content of soluble sugar and protein, content of chlorophyll and malondialdehyde (MDA), and activity of antioxidant enzymes of watermelon leaves were determined in five successive weeks to evaluate the physiological changes of watermelon plants after γ-FeO NPs exposure.
View Article and Find Full Text PDFAppl Environ Microbiol
February 2016
Many studies on phage biology are based on isolation methods that may inadvertently select for narrow-host-range phages. Consequently, broad-host-range phages, whose ecological significance is largely unexplored, are consistently overlooked. To enhance research on such polyvalent phages, we developed two sequential multihost isolation methods and tested both culture-dependent and culture-independent phage libraries for broad infectivity.
View Article and Find Full Text PDFAg(2)O/TNBs were fabricated by depositing Ag(2)O nanoparticles on the surface of TiO(2) nanobelts (TNBs). The disinfection activities of Ag(2)O/TNBs on two representative bacterial types: Gram-negative Escherichia coli ATCC15597 and Gram-positive Bacillus subtilis, were examined under both dark and visible light conditions. Ag(2)O/TNBs exhibited stronger bactericidal activities than Ag(2)O nanoparticles and TNBs under both dark and light conditions.
View Article and Find Full Text PDF