Front Cell Infect Microbiol
November 2024
Background: Senecavirus A (SVA) is a newly pathogenic virus correlated with the acute death of piglets and vesicular lesions in pigs. The further prevalence of SVA will cause considerable economic damage to the global pig farming industry. Therefore, rapid and accurate diagnostic tools for SVA are crucial for preventing and controlling the disease.
View Article and Find Full Text PDFThe occurrence of classical swine fever (CSF) poses a significant threat to the global swine industry. Developing an effective and safe vaccine is crucial for preventing and controlling CSF. Here, we constructed self-assembled ferritin nanoparticles fused with the classical swine fever virus (CSFV) E2 protein and a derived B cell epitope (Fe-E2B) using a baculovirus expression system (BVES), demonstrating enhanced immunogenicity.
View Article and Find Full Text PDFCSFV (classical swine fever virus) is currently endemic in developing countries in Asia and has recently re-emerged in Japan. Under the pressure of natural selection pressure, CSFV keeps evolving to maintain its ecological niche in nature. CSFV has evolved mechanisms that induce immune depression, but its pathogenic mechanism is still unclear.
View Article and Find Full Text PDFAfrican swine fever virus (ASFV) is a pathogen to cause devastating and economically significant diseases in domestic and feral swine. ASFV mainly infects macrophages and monocytes and regulates its replication process by affecting the content of cytokines in the infected cells. There is a limited understanding of host gene expression and differential profiles before and after ASFV infection in susceptible cells.
View Article and Find Full Text PDFFoot-and-mouth disease virus (FMDV), Senecavirus A (SVA) and swine vesicular disease virus (SVDV) are members of the family Picornaviridae, which can cause similar symptoms - vesicular lesions in the tissues of the mouth, nose, feet, skin and mucous membrane of animals. Rapid and accurate diagnosis of these viruses allows for control measures to prevent the spread of these diseases. Reverse transcription-polymerase chain reaction (RT-PCR) and real-time RT-PCR are traditional and reliable methods for pathogen detection, while their amplification reaction requires a thermocycler.
View Article and Find Full Text PDFAfrican swine fever (ASF) is a viral disease with a high fatality rate in both domestic pigs and wild boars. ASF has greatly challenged pig-raising countries and also negatively impacted regional and national trade of pork products. To date, ASF has spread throughout Africa, Europe, and Asia.
View Article and Find Full Text PDFEndoplasmic reticulum-associated degradation (ERAD) is highly conserved in yeast. Recent studies have shown that ERAD is also ubiquitous and highly conserved in eukaryotic cells, where it plays an essential role in maintaining endoplasmic reticulum (ER) homeostasis. Misfolded or unfolded proteins undergo ERAD.
View Article and Find Full Text PDFWith the accumulation of mutations in SARS-CoV-2 and the continuous emergence of new variants, the importance of developing safer and effective vaccines has become more prominent in combating the COVID-19 pandemic. Both traditional and genetically engineered vaccines have contributed to the prevention and control of the pandemic. However, in recent years, the trend of vaccination research has gradually transitioned from traditional to genetically engineered vaccines, with the development of viral vector vaccines attracting increasing attention.
View Article and Find Full Text PDFCoronaviruses, mainly including severe acute respiratory syndrome virus, severe acute respiratory syndrome coronavirus 2, Middle East respiratory syndrome virus, human coronavirus OC43, chicken infectious bronchitis virus, porcine infectious gastroenteritis virus, porcine epidemic diarrhea virus, and murine hepatitis virus, can cause severe diseases in humans and livestock. The severe acute respiratory syndrome coronavirus 2 is infecting millions of human beings with high morbidity and mortality worldwide, and the multiplicity of swine epidemic diarrhea coronavirus in swine suggests that coronaviruses seriously jeopardize the safety of public health and that therapeutic intervention is urgently needed. Currently, the most effective methods of prevention and control for coronaviruses are vaccine immunization and pharmacotherapy.
View Article and Find Full Text PDFMitophagy, which is able to selectively clear excess or damaged mitochondria, plays a vital role in the quality control of mitochondria and the maintenance of normal mitochondrial functions in eukaryotic cells. Mitophagy is involved in many physiological and pathological processes, including apoptosis, innate immunity, inflammation, cell differentiation, signal transduction, and metabolism. Viral infections cause physical dysfunction and thus pose a significant threat to public health.
View Article and Find Full Text PDFAfrican swine fever (ASF) is an acute, severe and hemorrhagic infectious disease caused by African swine fever virus (ASFV) infecting domestic pigs and wild boars. Since the outbreak of the disease in China in 2018, it has brought a great impact on China's pig industry. Classical swine fever (CSF) is an acute contact infectious disease of pigs caused by classical swine fever virus (CSFV) infection.
View Article and Find Full Text PDFPorcine circovirus type 2 (PCV2) is the dominant causative agent of PCV2 systemic disease (PCV2-SD) in pigs. It can also associate with other diseases such as respiratory and enteric diseases, reproductive failure, porcine dermatitis and nephropathy syndrome in pigs. Currently, PCV2 infection is a considerable threat in the swine industry.
View Article and Find Full Text PDFMitochondria are important organelles involved in metabolism and programmed cell death in eukaryotic cells. In addition, mitochondria are also closely related to the innate immunity of host cells against viruses. The abnormality of mitochondrial morphology and function might lead to a variety of diseases.
View Article and Find Full Text PDFAfrican swine fever is a highly contagious global disease caused by the African swine fever virus. Since African swine fever (ASF) was introduced to Georgia in 2007, it has spread to many Eurasian countries at an extremely fast speed. It has recently spread to China and other major pig-producing countries in southeast Asia, threatening global pork production and food security.
View Article and Find Full Text PDFClassical swine fever (CSF), caused by CSF virus (CSFV), is a highly contagious swine disease with high morbidity and mortality, which has caused significant economic losses to the pig industry worldwide. Biosecurity measures and vaccination are the main methods for prevention and control of CSF since no specific drug is available for the effective treatment of CSF. Although a series of biosecurity and vaccination strategies have been developed to curb the outbreak events, it is still difficult to eliminate CSF in CSF-endemic and re-emerging areas.
View Article and Find Full Text PDFClassical swine fever (CSF) is a highly contagious viral disease causing severe economic losses to the swine industry. As viroporins of viruses modulate the cellular ion balance and then take over the cellular machinery, blocking the activity of viroporin or developing viroporin-defective attenuated vaccines offers new approaches to treat or prevent viral infection. Non-structural protein p7 of CSF virus (CSFV) is a viroporin, which was highly involved in CSFV virulence.
View Article and Find Full Text PDFSerine incorporator 5 (SERINC5), a multipass transmembrane protein, protects cells from viral infections. The mechanism by which SERINC5 protects against classical swine fever virus (CSFV) infection is unknown. In this study, overexpression of SERINC5 in PK-15 and 3D4/2 cells significantly inhibited the growth of CSFV, whereas SERINC5 silencing enhanced CSFV growth.
View Article and Find Full Text PDFAfrican swine fever (ASF) is a highly lethal contagious disease of swine caused by African swine fever virus (ASFV). At present, it is listed as a notifiable disease reported to the World Organization for Animal Health (OIE) and a class one animal disease ruled by Chinese government. ASF has brought significant economic losses to the pig industry since its outbreak in China in August 2018.
View Article and Find Full Text PDFMx proteins are interferon (IFN)-induced GTPases that have broad antiviral activity against a wide range of RNA and DNA viruses; they belong to the dynamin superfamily of large GTPases. In this study, we confirmed the anti-classical swine fever virus (CSFV) activity of porcine Mx1 and showed that porcine Mx2 (poMx2), human MxA (huMxA), and mouse Mx1 (mmMx1) also have anti-CSFV activity Small interfering RNA (siRNA) experiments revealed that depletion of endogenous poMx1 or poMx2 enhanced CSFV replication, suggesting that porcine Mx proteins are responsible for the antiviral activity of interferon alpha (IFN-α) against CSFV infection. Confocal microscopy, immunoprecipitation, glutathione -transferase (GST) pulldown, and bimolecular fluorescence complementation (BiFC) demonstrated that poMx1 associated with NS5B, the RNA-dependent RNA polymerase (RdRp) of CSFV.
View Article and Find Full Text PDFDuring infection Japanese encephalitis virus (JEV) generally enters host cells via receptor-mediated clathrin-dependent endocytosis. The trafficking of JEV within endosomes is controlled by Rab GTPases, but which Rab proteins are involved in JEV entry into BHK-21 cells is unknown. In this study, entry and postinternalization of JEV were analyzed using biochemical inhibitors, RNA interference, and dominant negative (DN) mutants.
View Article and Find Full Text PDF