Optical Coherence Tomography (OCT) facilitates a comprehensive examination of macular edema and associated lesions. Manual delineation of retinal fluid is labor-intensive and error-prone, necessitating an automated diagnostic and therapeutic planning mechanism. Conventional supervised learning models are hindered by dataset limitations, while Transformer-based large vision models exhibit challenges in medical image segmentation, particularly in detecting small, subtle lesions in OCT images.
View Article and Find Full Text PDFRenal cell carcinoma (RCC) ranks among the most prevalent cancers worldwide, with both incidence and mortality rates increasing annually. The heterogeneity among RCC patients presents considerable challenges for developing universally effective treatment strategies, emphasizing the necessity of in-depth research into RCC's molecular mechanisms, understanding the variations among RCC patients and further identifying distinct molecular subtypes for precise treatment. We proposed a metagene-based similarity network fusion (Meta-SNF) method for RCC subtype identification with multi-omics data, using a non-negative matrix factorization technique to capture alternative structures inherent in the dataset as metagenes.
View Article and Find Full Text PDFMicroplastics not only accumulate various harmful substances but also are ingested by marine organisms and humans, causing immeasurable impacts. Therefore, the removal of microplastics has become a crucial proposition for addressing the issue of microplastic pollution. This study investigated a bidirectional ordered graphene oxide (GO)/nanocellulose aerogels (D-DPGG) to remove microplastics from water bodies.
View Article and Find Full Text PDFNatural polymer substrates are gaining attention as substitutes for plastic substrates in electronics, aiming to combine high performance, intricate shape deformation, and environmental sustainability. Herein, natural wood veneer is converted into a transparent wood film (TWF) substrate. The combination of 3D printing and origami technique is established to create programmable wood-based origami electronics, which exhibit superior flexibility with high tensile strength (393 MPa) due to the highly aligned cellulose fibers and the formation of numerous intermolecular hydrogen bonds between them.
View Article and Find Full Text PDFThe objective of this study was to identify effective agents for the prevention and control of ginseng root rot disease caused by . The inhibitory effects of 16 chemical fungicides and 10 biocontrol agents (strains) on mycelial growth and sclerotium formation in were determined using a plate confrontation essay. The results showed that the best chemical agents for inhibiting the mycelial growth and sclerotium formation of were fluconazole and fludioxonil, while FS6 and (Kono) were the best biocontrol agents (strains).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
October 2024
Excessive carbon dioxide ( ) emissions pose a formidable challenge, driving global climate change and necessitating urgent attention. Striking a balance between curbing emissions and fostering economic growth hinges upon the ability to reliably forecast emissions. Such forecasts are indispensable for policymakers as they endeavor to make informed decisions and proactively implement mitigation measures.
View Article and Find Full Text PDFLettuce (Lactuca sativa L., Asteraceae) is one of the most important vegetable crops, known for its various horticultural types and significant morphological variation. The first reference genome of lettuce, a crisphead type (L.
View Article and Find Full Text PDFFrequent oil spills pose significant threats to ecosystems; therefore, strict requirements are needed for prompt remediation and reclamation of spilled oil. Influenced by the structure of coniferous trees and their water transport, this experiment used cellulose nanofiber (CNF), polyvinyl alcohol (PVA), and methyltrimethoxysilane (MTMS) to prepare radially centrosymmetric aerogels. By utilizing the in-situ polycondensation reaction of MTMS, CNF, and PVA were connected, and the hydrophobicity and mechanical properties of the aerogel were greatly enhanced.
View Article and Find Full Text PDFPorcine epidemic diarrhea virus (PEDV) has developed as a global problem for the pig business, resulting in significant financial losses. Black soldier fly extract (BFE) has been proven to improve intestinal growth in pigs after weaning. Consequently, the goal of the present investigation was to explore the effects of BFE supplementation on intestinal function in PEDV-infected piglets.
View Article and Find Full Text PDFPorcine epidemic diarrhea virus (PEDV) has become a challenging problem in pig industry worldwide, causing significant profit losses. GG (LGG) has been regarded as a safe probiotic strain and has been shown to exert protective effects on the intestinal dysfunction caused by PEDV. This study evaluated the effect of LGG on the gut health of lactating piglets challenged with PEDV.
View Article and Find Full Text PDFElastic carbon aerogels have promising applications in the field of wearable sensors. Herein, a new strategy for preparing carbon aerogels with excellent compressive strength and strain, shape recovery, and fatigue resistance was proposed based on the structure design and carbonization optimization of nanocellulose-based precursor aerogels. By the combination of directional freezing and zinc ion cross-linking, bacterial cellulose (BC)/alginate (SA) composite aerogels with high elasticity and compressive strength were first achieved.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
January 2024
The 4-coumarate: CoA ligase(4CL) is a key enzyme in the upstream pathway of phenylpropanoids such as flavonoids, soluble phenolic esters, lignans, and lignins in plants. In this study, 13 4CL family members of Arabidopsis thaliana were used as reference sequences to identify the 4CL gene family candidate members of Isatis indigotica from the reported I. indigotica genome.
View Article and Find Full Text PDFSmart gating membranes have drawn much attention due to the controllable pore structure. Herein, a smart gating membrane with dual responsiveness was prepared from bacteria cellulose (BC) grafted with pH- and temperature-responsive polymers. By external stimulation, the average pore size of the membrane can be controlled from 33.
View Article and Find Full Text PDFOptical coherence tomography angiography (OCTA) offers critical insights into the retinal vascular system, yet its full potential is hindered by challenges in precise image segmentation. Current methodologies struggle with imaging artifacts and clarity issues, particularly under low-light conditions and when using various high-speed CMOS sensors. These challenges are particularly pronounced when diagnosing and classifying diseases such as branch vein occlusion (BVO).
View Article and Find Full Text PDFRecent reports had shown that microplastics could be transferred to organisms through various channels, severely and adversely affecting organisms' health and their physiological functions. Therefore, there remained an urgency to adopt an effective and environmentally friendly method to extract microplastics from water. In this paper, a cationic-modified d-DCPG aerogel with a three-dimensional network structure was successfully prepared by a directional freeze-drying technology in which double-aldehyde-modified cellulose nanofiber (CNF) was used as the matrix, betaine chloride hydrazide (GT) provided modification, and polyvinyl alcohol (PVA) provided cross-linking function.
View Article and Find Full Text PDFPetroleum-based plastics are useful but they pose a great threat to the environment and human health. It is highly desirable yet challenging to develop sustainable structural materials with excellent mechanical and optical properties for plastic replacement. Here, we report a simple and efficient method to manufacture high-performance all-biobased structural materials from cellulosic wood skeleton (WS) and gelatin via oxidation and densification.
View Article and Find Full Text PDFThe ultraviolet (UV) blocking performance of current bio-based devices is always limited by delignification and exploited chemical treatment. Lignocellulosic nanofibril (LCNF) is a promising green alternative that could efficiently impede UV radiation. Herein, we proposed a robust LCNF film that achieved 99.
View Article and Find Full Text PDFThis systematic review aims to investigate recent developments in the area of arc fault detection. The rising demand for electricity and concomitant expansion of energy systems has resulted in a heightened risk of arc faults and the likelihood of related fires, presenting a matter of considerable concern. To address this challenge, this review focuses on the role of artificial intelligence (AI) in arc fault detection, with the objective of illuminating its advantages and identifying current limitations.
View Article and Find Full Text PDFConductive hydrogels are considered one of the most promising materials for preparing flexible sensors due to their flexible and extensible properties. However, conventional hydrogels' weak mechanical and isotropic properties are greatly limited in practical applications. Here, the internal structure of the hydrogel was regulated by pre-stretching synergistic ion crosslinking to construct a carboxymethyl cellulose-based double network-oriented hydrogel similar to muscle.
View Article and Find Full Text PDFObjective: To provide a precise description of the morphology and morphometry of the hypoglossal canal (HC) and its relationship with surrounding structures by using the epoxy sheet plastination technique.
Methods: Thirty human cadaveric heads were plastinated into 5 sets of gross transparent plastination slices and 43 sets of ultrathin plastination sections. The HC were examined at both macro- and micro levels in these plastination sections and the reconstructed 3-dimensional visualization model.
A smart gating membrane based on thermal-sensitive poly (N-isopropyl acrylamide) (PNIPAM)-grafted nanocellulose and carbon nanotube (CNT) was prepared. The presence of PNIPAM shell on cellulose nanofibrils (CNFs) endow the composite membrane with thermal responsiveness. By external stimulation, an increase temperature from 10 °C to 70 °C allows the average pore size of the membrane to be controlled from 28 nm to 110 nm, as well as the water permeance from 440 L·m·h·bar to 1088 L·m·h·bar.
View Article and Find Full Text PDFThe combination of optical transparency and mechanical strength is a highly desirable attribute of wood-based glazing materials. However, such properties are typically obtained by impregnation of the highly anisotropic wood with index-matching fossil-based polymers. In addition, the presence of hydrophilic cellulose leads to a limited water resistance.
View Article and Find Full Text PDF