Body-centred cubic refractory multi-principal element alloys (MPEAs), with several refractory metal elements as constituents and featuring a yield strength greater than one gigapascal, are promising materials to meet the demands of aggressive structural applications. Their low-to-no tensile ductility at room temperature, however, limits their processability and scaled-up application. Here we present a HfNbTiVAl alloy that shows remarkable tensile ductility (roughly 20%) and ultrahigh yield strength (roughly 1,390 megapascals).
View Article and Find Full Text PDFTwinning is profuse in bcc transition metals (TMs) except bulk W and Mo. However, W and Mo nanocrystals surprisingly exhibit twinning during room temperature compression, which is completely unexpected as established nucleation mechanisms are not viable in them. Here, we reveal the physical origin of deformation twinning in W and Mo.
View Article and Find Full Text PDFUnderstanding the relationship among elemental compositions, nanolamellar microstructures, and mechanical properties enables the rational design of high-entropy alloys (HEAs). Here, we construct nanolamellar AlCoCuFeNi HEAs with alternating high- and low-Al concentration layers and explore their mechanical properties using a combination of molecular dynamic simulation and density functional theory calculation. Our results show that the HEAs with nanolamellar structures exhibit ideal plastic behavior during uniaxial tensile loading, a feature not observed in homogeneous HEAs.
View Article and Find Full Text PDFSimultaneously enhancing strength and ductility of metals and alloys has been a tremendous challenge. Here, we investigate a CoCuFeNiPd high-entropy alloy (HEA), using a combination of Monte Carlo method, molecular dynamic simulation, and density-functional theory calculation. Our results show that this HEA is energetically favorable to undergo short-range ordering (SRO), and the SRO leads to a pseudo-composite microstructure, which surprisingly enhances both the ultimate strength and ductility.
View Article and Find Full Text PDFDeveloping economic, effective and stable bifunctional electrocatalysts to achieve sustainable hydrogen production is highly desired. Herein, C-coated CoP hollow microporous nanocages (C-CoP-1/12) are synthesized by calcination of a Prussian blue analog precursor and subsequent phosphorization treatment. Under alkaline condition, the C-CoP-1/12 exhibit splendid electrocatalytic performance with a low overpotential of 173 mV for hydrogen evolution reaction (HER) and 333 mV for oxygen evolution reaction (OER) at a current density of 10 mA cm-2.
View Article and Find Full Text PDFPure magnesium exhibits poor ductility owing to pyramidal [Formula: see text] dislocation transformations to immobile structures, making this lowest-density structural metal unusable for many applications where it could enhance energy efficiency. We show why magnesium can be made ductile by specific dilute solute additions, which increase the [Formula: see text] cross-slip and multiplication rates to levels much faster than the deleterious [Formula: see text] transformation, enabling both favorable texture during processing and continued plastic straining during deformation. A quantitative theory establishes the conditions for ductility as a function of alloy composition in very good agreement with experiments on many existing magnesium alloys, and the solute-enhanced cross-slip mechanism is confirmed by transmission electron microscopy observations in magnesium-yttrium.
View Article and Find Full Text PDFGalantamine, which is currently used in the treatment of Alzheimer's disease (AD), has been shown to exert a neuroprotective effect against beta-amyloid (Aβ) peptide-induced toxicity, a critical component involved in the pathogenesis of AD. The aim of this study was to examine the effects of galantamine on proliferation, senescence and ROS production in a U87 cell line treated with Aβ. With the use of a Cell Counting Kit-8 and β galactosidase staining assay, we observed that galantamine (0.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2016
Hexagonal close-packed (hcp) metals such as Mg, Ti, and Zr are lightweight and/or durable metals with critical structural applications in the automotive (Mg), aerospace (Ti), and nuclear (Zr) industries. The hcp structure, however, brings significant complications in the mechanisms of plastic deformation, strengthening, and ductility, and these complications pose significant challenges in advancing the science and engineering of these metals. In hcp metals, generalized plasticity requires the activation of slip on pyramidal planes, but the structure, motion, and cross-slip of the associated [Formula: see text] dislocations are not well established even though they determine ductility and influence strengthening.
View Article and Find Full Text PDFWhile galantamine may not provide a cure for Alzheimer's disease (AD), it decelerates the progression and provides symptomatic relief for this disorder. The aim of this study was to investigate the effect of chronic galantamine treatment on cognitive performance, Aβ deposition and astrocyte activation in the transgenic APP/PS1 mouse model of AD. Galantamine (5mg/kg, i.
View Article and Find Full Text PDFMagnesium is a lightweight structural metal but it exhibits low ductility-connected with unusual, mechanistically unexplained, dislocation and plasticity phenomena-which makes it difficult to form and use in energy-saving lightweight structures. We employ long-time molecular dynamics simulations utilizing a density-functional-theory-validated interatomic potential, and reveal the fundamental origins of the previously unexplained phenomena. Here we show that the key 〈c + a〉 dislocation (where 〈c + a〉 indicates the magnitude and direction of slip) is metastable on easy-glide pyramidal II planes; we find that it undergoes a thermally activated, stress-dependent transition to one of three lower-energy, basal-dissociated immobile dislocation structures, which cannot contribute to plastic straining and that serve as strong obstacles to the motion of all other dislocations.
View Article and Find Full Text PDFThe emergence of size-dependent mechanical strength in nanosized materials is now well-established, but no fundamental understanding of fracture toughness or flaw sensitivity in nanostructures exists. We report the fabrication and in situ fracture testing of ∼70 nm diameter Ni-P metallic glass samples with a structural flaw. Failure occurs at the structural flaw in all cases, and the failure strength of flawed samples was reduced by 40% compared to unflawed samples.
View Article and Find Full Text PDFUnderstanding failure in nanomaterials is critical for the design of reliable structural materials and small-scale devices with nanoscale components. No consensus exists on the effect of flaws on fracture at the nanoscale, but proposed theories include nanoscale flaw tolerance and maintaining macroscopic fracture relationships at the nanoscale with scarce experimental support. We explore fracture in nanomaterials using nanocrystalline Pt nanocylinders with prefabricated surface notches created using a "paused" electroplating method.
View Article and Find Full Text PDFWe report the synthesis, mechanical properties, and deformation mechanisms of polycrystalline, platinum nanocylinders of grain size d = 12 nm. The number of grains across the diameter, D/d, was varied from 5 to 80 and 1.5 to 5 in the experiments and molecular dynamics simulations, respectively.
View Article and Find Full Text PDFExperimental studies of the tensile behavior of metallic nanowires show a wide range of failure modes, ranging from ductile necking to brittle/localized shear failure-often in the same diameter wires. We performed large-scale molecular dynamics simulations of copper nanowires with a range of nanowire lengths and provide unequivocal evidence for a transition in nanowire failure mode with change in nanowire length. Short nanowires fail via a ductile mode with serrated stress-strain curves, while long wires exhibit extreme shear localization and abrupt failure.
View Article and Find Full Text PDF