Respiratory syncytial virus (RSV) can lead to serious disease in infants, and no approved RSV vaccine is available for infants. This first in-human clinical trial evaluated a single dose of BLB201, a PIV5-vectored RSV vaccine administrated via intranasal route, for safety and immunogenicity in RSV-seropositive healthy adults (33 to 75 years old). No severe adverse events (SAEs) were reported.
View Article and Find Full Text PDFUnlabelled: With the goal of developing a virus-like particle-based vaccine based on dense bodies (DB) produced by human cytomegalovirus (HCMV) infections, we evaluated scalable culture, isolation, and inactivation methods and applied technically advanced assays to determine the relative purity, composition, and immunogenicity of DB particles. Our results increase our understanding of the benefits and disadvantages of methods to recover immunogenic DB and inactivate contaminating viral particles. Our results indicate that (i) HCMV strain Towne replicates in MRC-5 fibroblasts grown on microcarriers, (ii) DB particles recovered from 2-bromo-5,6-dichloro-1-beta-d-ribofuranosyl benzimidazole riboside (BDCRB)-treated cultures and purified by tangential flow filtration (TFF-DB) or glycerol tartrate gradient sedimentation (GT-DB) constitute 92% or 98%, respectively, of all particles in the final product, (iii) epithelial cell-tropic DB particles are recovered from a single round of coinfection by AD169 and Towne strain viruses, consistent with complementation between the UL130 and UL131A expressed by these strains and restoration of gH/gL/UL128-UL131A (gH pentamer), (iv) equivalent neutralizing antibody titers are induced in mice following immunization with epithelial cell-tropic DB or gH pentamer-deficient DB preparations, (v) UV-inactivated residual virus in GT-DB or TFF-DB preparations retained immunogenicity and induced neutralizing antibody, preventing viral entry into epithelial cells, and (vi) GT-DB and TFF-DB induced cellular immune responses to multiple HCMV peptides.
View Article and Find Full Text PDFFatty acid synthase (FASN) catalyzes the de novo synthesis of palmitate, a fatty acid utilized for synthesis of more complex fatty acids, plasma membrane structure, and post-translational palmitoylation of host and viral proteins. We have developed a potent inhibitor of FASN (TVB-3166) that reduces the production of respiratory syncytial virus (RSV) progeny in vitro from infected human lung epithelial cells (A549) and in vivo from mice challenged intranasally with RSV. Addition of TVB-3166 to the culture medium of RSV-infected A549 cells reduces viral spread without inducing cytopathic effects.
View Article and Find Full Text PDFUnlabelled: Inhibition of de novo palmitate synthesis via fatty acid synthase (FASN) inhibition provides an unproven approach to cancer therapy with a strong biological rationale. FASN expression increases with tumor progression and associates with chemoresistance, tumor metastasis, and diminished patient survival in numerous tumor types. TVB-3166, an orally-available, reversible, potent, and selective FASN inhibitor induces apoptosis, inhibits anchorage-independent cell growth under lipid-rich conditions, and inhibits in-vivo xenograft tumor growth.
View Article and Find Full Text PDFHuman cytomegalovirus (HCMV), a betaherpesvirus, can cause severe disease in immunosuppressed patients and following congenital infection. A vaccine that induces both humoral and cellular immunity may be required to prevent congenital infection. Dense bodies (DBs) are complex, noninfectious particles produced by HCMV-infected cells and may represent a vaccine option.
View Article and Find Full Text PDFBackground: Recent incidents where highly pathogenic influenza A H5N1 viruses have spread from avian species into humans have prompted the development of cell-based production of influenza vaccines as an alternative to or replacement of current egg-based production. Madin-Darby canine kidney (MDCK) cells are the primary cell-substrate candidate for influenza virus production but an efficient system for the direct rescue of influenza virus from cloned influenza cDNAs in MDCK cells did not exist. The objective of this study was to develop a highly efficient method for direct rescue of influenza virus in MDCK cells.
View Article and Find Full Text PDFBackground: Human cytomegalovirus (HCMV) infection acquired in utero often results in severe consequences, including mental retardation and deafness. Although not evaluated for this indication, live attenuated HCMV vaccines based on the Towne strain are well-tolerated and have demonstrated moderate efficacy in other clinical settings.
Methods: To produce live HCMV vaccine candidates that retain the excellent safety profile of the Towne strain but are more immunogenic, the genomes of the Towne strain and the unattenuated HCMV Toledo strain were recombined to yield 4 independent chimeric vaccine candidates.
MedImmune Vaccines has created four, live, attenuated human cytomegalovirus (HCMV) vaccine candidates, each derived from defined portions of the parental strains, Towne and Toledo. To determine each candidate's ability to induce HCMV specific immunity, a fluorescence-based microneutralization assay was developed using recombinants of Toledo and Towne which express enhanced green fluorescent protein (EGFP). Replication of the EGFP recombinants in cell culture was the same as the respective parental strains.
View Article and Find Full Text PDFHuman cytomegalovirus (CMV) establishes persistent infection, with control of replication thought to be mediated by CMV-specific CD8 T cells. Primary CMV infection commonly affects young children and causes prolonged viral shedding in saliva and urine. We investigated whether this virus-host interaction pattern reflects a developmental deficiency of antiviral CD8 T cell-mediated immunity during childhood.
View Article and Find Full Text PDFHealthy young children who acquire CMV have prolonged viral shedding into the urine and saliva, but whether this is attributable to limitations in viral-specific immune responses has not been explored. In this study, we found that otherwise immunocompetent young children after recent primary CMV infection accumulated markedly fewer CMV-specific CD4(+) T cells that produced IFN-gamma than did adults. These differences in CD4(+) T cell function persisted for more than 1 year after viral acquisition, and did not apply to CMV-specific IFN-gamma production by CD8(+) T cells.
View Article and Find Full Text PDF