Publications by authors named "Zhaoqian Fan"

Chitosan oligosaccharide (COS) modification is a feasible way to develop novel green nematicides. This study involved the synthesis of various COS sulfonamide derivatives via hydroxylated protection and deprotection, which were then characterized using NMR, FTIR, MS, elemental analysis, XRD, and TG/DTG. In vitro experiments found that COS-alkyl sulfonamide derivatives (S6 and S11-S13) exhibited high mortality (>98 % at 1 mg/mL) against Meloidogyne incognita second-instar larvaes (J2s) among the derivatives.

View Article and Find Full Text PDF

Chemical nematicide is the most common method of controlling plant-parasitic nematodes (PPN). Given the negative impact of chemical nematicides on the environment and ecosystem, it is necessary to seek their alternatives and novel modes of application. Chitin oligo/polysaccharide (COPS), including chitosan and chitosan oligosaccharide, has unique biological properties.

View Article and Find Full Text PDF
Article Synopsis
  • There's a growing demand for natural alternatives to biohazardous nematicides to control root-knot nematodes (RKNs) in agriculture.
  • Researchers isolated an antagonistic fungus (1T-2) that creates harmful effects on nematodes and identified a compound called 2-furoic acid from it that shows potential as a nematicide.
  • 2-Furoic acid demonstrated significant nematode mortality and negatively impacted their reproductive success, indicating its effectiveness and potential for biocontrol in agricultural settings.
View Article and Find Full Text PDF

The exploration of novel, environmentally friendly, and efficient nematicides is essential, and modifying natural biomacromolecules is one feasible approach. In this study, 6-O-(trifluorobutenyl-oxadiazol)-chitosan oligosaccharide derivative was synthesized and characterized by FTIR, NMR, and TG/DTG. Its bioactivity and action mode against root-knot nematode were estimated.

View Article and Find Full Text PDF

Plant-parasitic nematodes cause severe economic losses annually which has been a persistent problem worldwide. As current nematicides are highly toxic, prone to drug resistance, and have poor stability, there is an urgent need to develop safe, efficient, and green strategies. Natural active polysaccharides such as chitin and chitosan with good biocompatibility and biodegradability and inducing plant disease resistance have attracted much attention, but their application is limited due to their poor solubility.

View Article and Find Full Text PDF

In this paper, chitooligosaccharides in different salt forms, such as chitooligosaccharide lactate, citrate, adipate, etc., were prepared by the microwave method. They were characterized by SEM, FTIR, NMR, etc.

View Article and Find Full Text PDF

Plant root-knot nematode disease is a great agricultural problem and commercially available nematicides have the disadvantages of high toxicity and limited usage; thus, it is urgent to develop new nematicides derived from nature substances. In this study, a novel fluorinated derivative was synthesized by modifying chitosan oligosaccharide (COS) using the strategy of multiple functions. The derivatives were characterized by FTIR, NMR, elemental analysis, and TG/DTG.

View Article and Find Full Text PDF

Plant-parasitic nematodes cause substantial crop losses annually; however, current nematicides are environmentally unfriendly and highly toxic to nontarget organisms. The development of green efficient nematicides from multifunctional natural bioactive substances such as chitin oligosaccharide (COS) is promising. In this paper, COS dithiocarbamate derivatives (COSDTC, COSDTA, COSDTB) were synthesized to increase nematicidal activity (against Meloidogyne incognita), and their structures were characterized by FTIR, NMR, TGA/DTG and elemental analysis.

View Article and Find Full Text PDF

Botrytis cinerea, Phytophthora capsici Leonian, and Fusarium solani are important plant pathogenic fungi which can cause great crop losses worldwide, but their control methods are limited. It is necessary to develop efficient and green fungicides from abundant marine resources. Chitosan is a non-toxic, biodegradable, biocompatible marine polysaccharide which has prospective applications in agriculture.

View Article and Find Full Text PDF