Publications by authors named "Zhaoqi Wu"

Identifying drug-target binding affinity (DTA) plays a critical role in early-stage drug discovery. Despite the availability of various existing methods, there are still two limitations. Firstly, sequence-based methods often extract features from fixed length protein sequences, requiring truncation or padding, which can result in information loss or the introduction of unwanted noise.

View Article and Find Full Text PDF

Diabetic wounds are a common complication of diabetes. The prolonged exposure to high glucose and oxidative stress in the wound environment increases the risk of bacterial infection and abnormal angiogenesis, leading to amputation. Microneedle patches have shown promise in promoting the healing of diabetic wounds through transdermal drug delivery.

View Article and Find Full Text PDF

The maternal inheritance of mitochondria is a widely accepted paradigm, and mechanisms that prevent paternal mitochondria transmission to offspring during spermatogenesis and postfertilization have been described. Although certain species do retain paternal mitochondria, the factors affecting paternal mitochondria inheritance in these cases are unclear. More importantly, the evolutionary benefit of retaining paternal mitochondria and their ultimate fate are unknown.

View Article and Find Full Text PDF

Anti-washout underwater concrete (AWC) is widely used in nondrainage strengthening; however, there still exist some problems with it, such as high strength loss and poor interfacial bond in practical engineering application. Based on the study of self-stressed concrete (SSC), a research on the mix ratio for the C30 self-stressed anti-washout underwater concrete (SSAWC) was carried out in this paper in hope of solving the above problems, specifically, by adding an expansive agent to the AWC. The parameters, such as strength, fluidity, anti-dispersity, and expansibility, were picked as target indices in determination of the mix ratio.

View Article and Find Full Text PDF

We establish a quantum Otto engine (QOE) of a two-level atom, which is confined in a one-dimensional (1D) harmonic trap and is coupled to single-mode radiation fields. Besides two adiabatic processes, the QOE cycle consists of two isochoric processes, along one of which the two-level atom as the working substance interacts with a single-mode radiation field. Based on the semigroup approach, we derive the time for completing any adiabatic process and then present a performance analysis of the heat engine model.

View Article and Find Full Text PDF

We study the efficiency at maximum power, η(m), of irreversible quantum Carnot engines (QCEs) that perform finite-time cycles between a hot and a cold reservoir at temperatures T(h) and T(c), respectively. For QCEs in the reversible limit (long cycle period, zero dissipation), η(m) becomes identical to the Carnot efficiency η(C)=1-T(c)/T(h). For QCE cycles in which nonadiabatic dissipation and the time spent on two adiabats are included, the efficiency η(m) at maximum power output is bounded from above by η(C)/(2-η(C)) and from below by η(C)/2.

View Article and Find Full Text PDF