Bringing objects from peripheral locations to fovea via saccades facilitates their recognition. Human observers integrate pre- and post-saccadic information for recognition. This integration has only been investigated using instructed saccades to prescribed locations.
View Article and Find Full Text PDFSensory neurons often encode multisensory or multimodal signals. For example, many medial superior temporal (MST) neurons are tuned to heading direction of self-motion based on visual (optic flow) signals and vestibular signals. Middle temporal (MT) cortical neurons are tuned to object depth from signals of two visual modalities: motion parallax and binocular disparity.
View Article and Find Full Text PDFLooking leads gaze to objects; seeing recognizes them. Visual crowding makes seeing difficult or impossible before looking brings objects to the fovea. Looking before seeing can be guided by saliency mechanisms in the primary visual cortex (V1).
View Article and Find Full Text PDFVision includes looking and seeing. Looking, mainly via gaze shifts, selects a fraction of visual input information for passage through the brain's information bottleneck. The selected input is placed within the attentional spotlight, typically in the central visual field.
View Article and Find Full Text PDFTypically, searching for a target among uniformly tilted non-targets is easier when this target is perpendicular, rather than parallel, to the non-targets. The V1 Saliency Hypothesis (V1SH) - that V1 creates a saliency map to guide attention exogenously - predicts exactly the opposite in a special case: each target or non-target is a pair of equally-sized disks, a homo-pair of two disks of the same color, black or white, or a hetero-pair of two disks of the opposite color; the inter-disk displacement defines its orientation. This prediction - parallel advantage - was supported by the finding that parallel targets require shorter reaction times (RTs) to report targets' locations.
View Article and Find Full Text PDFTrends Cogn Sci
June 2023
Attentional bottlenecks force animals to deeply process only a selected fraction of sensory inputs. This motivates a unifying central-peripheral dichotomy (CPD), which separates multisensory processing into functionally defined central and peripheral senses. Peripheral senses (e.
View Article and Find Full Text PDFVision Res
December 2022
Li and Atick (Network: Computation in Neural Systems 5 (1994) 157-174) presented a theory of efficient binocular encoding that explains a number of experimental findings. A binocular neuron is conventionally described in terms of two channels: the left and right eyes. Li and Atick's theory instead describes the neuron in terms of two alternative channels: the binocular sum and difference.
View Article and Find Full Text PDFAccording to the central-peripheral dichotomy (CPD), feedback from higher to lower cortical areas along the visual pathway to aid recognition is weaker in the more peripheral visual field. Metacontrast masking is predominantly a reduced visibility of a brief target by a brief and spatially adjacent mask when the mask succeeds rather than precedes or coincides with the target. If this masking works mainly by interfering with the feedback mechanisms for target recognition, then, by the CPD, this masking should be weaker at more peripheral visual locations.
View Article and Find Full Text PDFFinding a target among uniformly oriented non-targets is typically faster when this target is perpendicular, rather than parallel, to the non-targets. The V1 Saliency Hypothesis (V1SH), that neurons in the primary visual cortex (V1) signal saliency for exogenous attentional attraction, predicts exactly the opposite in a special case: each target or non-target comprises two equally sized disks displaced from each other by 1.2 disk diameters center-to-center along a line defining its orientation.
View Article and Find Full Text PDFIn a random-dot stereogram (RDS), the spatial disparities between the interocularly corresponding black and white random dots determine the depths of object surfaces. If a black dot in one monocular image corresponds to a white dot in the other, disparity-tuned neurons in primary visual cortex (V1) respond as if their preferred disparities become non-preferred and vice versa, reversing the disparity sign reported to higher visual areas. Reversed depth is perceptible in the peripheral but not the central visual field.
View Article and Find Full Text PDFConsider a gray field comprising pairs of vertically aligned dots; in each pair, one dot is white the other black. When viewed in a peripheral visual field, these pairs appear horizontally aligned. By the Central-Peripheral Dichotomy, this flip tilt illusion arises because top-down feedback from higher to lower visual cortical areas is too weak or absent in the periphery to veto confounded feedforward signals from the primary visual cortex (V1).
View Article and Find Full Text PDFAn international group of researchers met in November 2019 in Beijing to explore the intersection of neuroscience and AI. The aim was to offer a fertile ground for stimulating discussions and ideas, including issues such as policy making and the future of neuroscience and AI across the globe.
View Article and Find Full Text PDFIn previous work (May & Zhaoping, 2016; May, Zhaoping, & Hibbard, 2012), we have provided evidence that the visual system efficiently encodes binocular information using separately adaptable binocular summation and differencing channels. In that work, binocular test stimuli delivered different grating patterns to the two binocular channels; selective adaptation of one of the binocular channels made participants more likely to see the other channel's grating pattern. In the current study, we extend this paradigm to face perception.
View Article and Find Full Text PDFCurr Opin Neurobiol
October 2019
Visual attention selects only a tiny fraction of visual input information for further processing. Selection starts in the primary visual cortex (V1), which creates a bottom-up saliency map to guide the fovea to selected visual locations via gaze shifts. This motivates a new framework that views vision as consisting of encoding, selection, and decoding stages, placing selection on center stage.
View Article and Find Full Text PDFTo investigate the hemispheric lateralization of attentional processes during visual search tasks depending on the stimulus material embedding the target, twelve patients with unilateral left (n = 7) or right (n = 5) parietal lesions and 20 age and education matched healthy controls (HC) were recruited. We used a visual search task for a uniquely tilted oblique bar embedded in an object shape 'N' or in its mirror reversal 'И'. The accuracy and the averaged reaction times (RTs) in each stimulus type ('N' or 'И') were analysed.
View Article and Find Full Text PDFScand J Gastroenterol
January 2019
Aims: The red blood cell distribution width-to-platelet ratio (RPR) has been reported to be an indicator of hepatic fibrosis in patients with chronic hepatitis B (HBV), nonalcoholic fatty liver disease (NAFLD) or chronic hepatitis C (HCV). However, no research has explored the RPR in all patients with hepatic fibrosis. There is a recognized need to establish whether the RPR could assess hepatic fibrosis and reflect the severity of fibrosis, regardless of the patient's etiology.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2018
Early sensory cortex is better known for representing sensory inputs but less for the effect of its responses on behavior. Here we explore the behavioral correlates of neuronal responses in primary visual cortex (V1) in a task to detect a uniquely oriented bar-the orientation singleton-in a background of uniformly oriented bars. This singleton is salient or inconspicuous when the orientation contrast between the singleton and background bars is sufficiently large or small, respectively.
View Article and Find Full Text PDFIn a random-dot stereogram, the percept of object surfaces in a three-dimensional scene is generated by images presented to left and right eyes that comprise interocularly corresponding random black and white dots. The spatial disparities between the corresponding dots determine the depths of object surfaces. If the dots are anticorrelated, such that a black dot in one monocular image corresponds to a white dot in the other, disparity-tuned neurons in the primary visual cortex (V1) respond as if their preferred disparities become nonpreferred and vice versa, thereby reversing the disparity signs reported to higher visual areas.
View Article and Find Full Text PDFAn eye-of-origin singleton, e.g., a bar shown to the left eye among many other bars shown to the right eye, can capture attention and gaze exogenously or reflexively, even when it appears identical to other visual input items in the scene and when the eye-of-origin feature is irrelevant to the observer's task.
View Article and Find Full Text PDFEye movements bring attended visual inputs to the center of vision for further processing. Thus, central and peripheral vision should have different functional roles. Here, we use observations of visual perception under dichoptic stimuli to infer that there is a difference in the top-down feedback from higher brain centers to primary visual cortex.
View Article and Find Full Text PDFRecent data have supported the hypothesis that, in primates, the primary visual cortex (V1) creates a saliency map from visual input. The exogenous guidance of attention is then realized by means of monosynaptic projections to the superior colliculus, which can select the most salient location as the target of a gaze shift. V1 is less prominent, or is even absent in lower vertebrates such as fish; whereas the superior colliculus, called optic tectum in lower vertebrates, also receives retinal input.
View Article and Find Full Text PDFThe brain is bombarded with a continuous stream of sensory information, but biological limitations on the data-transmission rate require this information to be encoded very efficiently [1]. Li and Atick [2] proposed that the two eyes' signals are coded efficiently in the brain using mutually decorrelated binocular summation and differencing channels; when a channel is strongly stimulated by the visual input, such that sensory noise is negligible, the channel should undergo temporary desensitization (known as adaptation). To date, the evidence for this theory has been limited [3, 4], and the binocular differencing channel is missing from many models of binocular integration [5-10].
View Article and Find Full Text PDFUsing our own brains to study our brains is extraordinary. For example, in vision this makes us naturally blind to our own blindness, since our impression of seeing our world clearly is consistent with our ignorance of what we do not see. Our brain employs its 'conscious' part to reason and make logical deductions using familiar rules and past experience.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
March 2016
The Rayleigh match is defined by the range of mixtures of red and green lights that appear the same as an intensity-adjustable monochromatic yellow light. The perceptual match indicates that the red-green mixture and the yellow light have evoked the same respective cone absorptions in the L- and M-cone pathways. Going beyond the existing models, the Poisson noise in cone absorptions is proposed to make the matching proportion of red-green mixtures span a finite range because any mixture in that range evokes cone absorptions that do not differ from those by a yellow light by more than the variations in the absorption noise.
View Article and Find Full Text PDFPLoS Comput Biol
October 2015
It has been hypothesized that neural activities in the primary visual cortex (V1) represent a saliency map of the visual field to exogenously guide attention. This hypothesis has so far provided only qualitative predictions and their confirmations. We report this hypothesis' first quantitative prediction, derived without free parameters, and its confirmation by human behavioral data.
View Article and Find Full Text PDF