Publications by authors named "Zhaopeng Meng"

Enhanced animal welfare has emerged as a pivotal element in contemporary precision animal husbandry, with bovine monitoring constituting a significant facet of precision agriculture. The evolution of intelligent agriculture in recent years has significantly facilitated the integration of drone flight monitoring tools and innovative systems, leveraging deep learning to interpret bovine behavior. Smart drones, outfitted with monitoring systems, have evolved into viable solutions for wildlife protection and monitoring as well as animal husbandry.

View Article and Find Full Text PDF

Deep reinforcement learning (DRL) and deep multiagent reinforcement learning (MARL) have achieved significant success across a wide range of domains, including game artificial intelligence (AI), autonomous vehicles, and robotics. However, DRL and deep MARL agents are widely known to be sample inefficient that millions of interactions are usually needed even for relatively simple problem settings, thus preventing the wide application and deployment in real-industry scenarios. One bottleneck challenge behind is the well-known exploration problem, i.

View Article and Find Full Text PDF

The capability of generalization to unseen domains is crucial for deep learning models when considering real-world scenarios. However, current available medical image datasets, such as those for COVID-19 CT images, have large variations of infections and domain shift problems. To address this issue, we propose a prior knowledge driven domain adaptation and a dual-domain enhanced self-correction learning scheme.

View Article and Find Full Text PDF

Automatic extraction of liver and tumor from CT volumes is a challenging task due to their heterogeneous and diffusive shapes. Recently, 2D deep convolutional neural networks have become popular in medical image segmentation tasks because of the utilization of large labeled datasets to learn hierarchical features. However, few studies investigate 3D networks for liver tumor segmentation.

View Article and Find Full Text PDF

Gene selection algorithm in micro-array data classification problem finds a small set of genes which are most informative and distinctive. A well-performed gene selection algorithm should pick a set of genes that achieve high performance and the size of this gene set should be as small as possible. Many of the existing gene selection algorithms suffer from either low performance or large size.

View Article and Find Full Text PDF

Gliomas have the highest mortality rate and prevalence among the primary brain tumors. In this study, we proposed a supervised brain tumor segmentation method which detects diverse tumoral structures of both high grade gliomas and low grade gliomas in magnetic resonance imaging (MRI) images based on two types of features, the gradient features and the context-sensitive features. Two-dimensional gradient and three-dimensional gradient information was fully utilized to capture the gradient change.

View Article and Find Full Text PDF

In this paper, we theoretically and experimentally analyze the frequency-comb interferometry at 518 nm in the underwater environment, which we use to measure the underwater distance with high accuracy and precision. In the time domain, we analyze the principle of pulse cross correlation. The interferograms can be obtained in the vicinity of N∙lpp, where N is an integer and lpp is the pulse-to-pulse length.

View Article and Find Full Text PDF

Although tracking research has achieved excellent performance in mathematical angles, it is still meaningful to analyze tracking problems from multiple perspectives. This motivation not only promotes the independence of tracking research but also increases the flexibility of practical applications. This paper presents a significant tracking framework based on the multi-dimensional state⁻action space reinforcement learning, termed as multi-angle analysis collaboration tracking (MACT).

View Article and Find Full Text PDF

Feature selection, which identifies a set of most informative features from the original feature space, has been widely used to simplify the predictor. Recursive feature elimination (RFE), as one of the most popular feature selection approaches, is effective in data dimension reduction and efficiency increase. A ranking of features, as well as candidate subsets with the corresponding accuracy, is produced through RFE.

View Article and Find Full Text PDF

In this paper, we demonstrate a method using a frequency comb, which can precisely measure the refractive index of water. We have developed a simple system, in which a Michelson interferometer is placed into a quartz-glass container with a low expansion coefficient, and for which compensation of the thermal expansion of the water container is not required. By scanning a mirror on a moving stage, a pair of cross-correlation patterns can be generated.

View Article and Find Full Text PDF

Location data are among the most widely used context data in context-aware and ubiquitous computing applications. Many systems with distinct deployment costs and positioning accuracies have been developed over the past decade for indoor positioning. The most useful method is focused on the received signal strength and provides a set of signal transmission access points.

View Article and Find Full Text PDF

Neighbor discovery and the power of sensors play an important role in the formation of Wireless Sensor Networks (WSNs) and mobile networks. Many asynchronous protocols based on wake-up time scheduling have been proposed to enable neighbor discovery among neighboring nodes for the energy saving, especially in the difficulty of clock synchronization. However, existing researches are divided two parts with the neighbor-discovery methods, one is the quorum-based protocols and the other is co-primality based protocols.

View Article and Find Full Text PDF