Publications by authors named "Zhaonian Yuan"

Root-soil underground interactions mediated by soil microorganisms and metabolites are crucial for fertilizer utilization efficiency and crop growth regulation. This study employed a combined approach of soil microbial community profiling and non-targeted metabolomics to investigate the patterns of root-associated microbial aggregation and the mechanisms associated with metabolites under varying controlled-release fertilizer (CRF) application rates. The experimental treatments included five field application rates of CRF (D1: 675 kg/ha; D15: 1012.

View Article and Find Full Text PDF

Understanding the normal variation of the sugarcane rhizosphere fungal community throughout its life cycle is essential for the development of agricultural practices for fungal and ecological health associated with the microbiota. Therefore, we performed high-throughput sequencing of 18S rDNA of soil samples using the Illumina sequencing platform for correlation analysis of rhizosphere fungal community time series, covering information from 84 samples in four growth periods. The results revealed that the sugarcane rhizosphere fungi possessed the maximum fungal richness in Tillering.

View Article and Find Full Text PDF

Exogenous GAs have an indeterminate effect on root development. Our current study used female papaya to reveal how the roots and rhizosphere respond to the exogenous application of GA by investigating the transcriptome profile in roots, metabolic profile and microbial community in both roots and rhizosphere of GA-treated and control female papaya. The results demonstrated that exogenous GA treatment enhanced female papaya lateral root development, which gave plants physical advantages of water and nutrient uptake.

View Article and Find Full Text PDF

Dioecious plant species have a high genetic variation that is important for coping with or adapting to environmental stress through natural selection. Intensive studies have reported dimorphism morphism in morphology, physiology, as well as biotic and abiotic stress responses in dioecious plants. Here, we demonstrated the dimorphism of metabolic profile and the preference of some microorganisms in the roots and rhizosphere soils of male and female papaya.

View Article and Find Full Text PDF

Background: As one of the vital crops globally, sugarcane (Saccharum officinarum L.) has been one of model crops for conducting metabolome research. Although many studies have focused on understanding bioactive components in specific sugarcane tissues, crucial questions have been left unanswered about the response of metabolites to niche differentiation such as different sugarcane tissues (leaf, stem and root), and soil regions (rhizosphere and bulk) under silicon (Si) amended soils.

View Article and Find Full Text PDF

The microbiomes of plant are potential determinants of plant growth, productivity, and health. They provide plants with a plethora of functional capacities, namely, phytopathogens suppression, access to low-abundance nutrients, and resistance to environmental stressors. However, a comprehensive insight into the structural compositions of the bacterial abundance, diversity, richness, and function colonizing various microenvironments of plants, and specifically their association with bioactive compounds and soil edaphic factors under silicon (Si) amendment remains largely inconclusive.

View Article and Find Full Text PDF

Plants and rhizosphere bacterial microbiota have intimate relationships. As neighbors of the plant root system, rhizosphere microorganisms have a crucial impact on plant growth and health. In this study, we sampled rhizosphere soil of sugarcane in May (seedling), July (tillering), September (elongation) and November (maturity), respectively.

View Article and Find Full Text PDF

Metabolic composition can have potential impact on several vital agronomic traits, and metabolomics, which represents the bioactive compounds in plant tissues, is widely considered as a powerful approach for linking phenotype-genotype interactions. However, metabolites related to cane traits such as sugar content, rind color, and texture differences in different sugarcane cultivars using metabolome integrated with transcriptome remain largely inconclusive. In this study, metabolome integrated with transcriptome analyses were performed to identify and quantify metabolites composition, and have better insight into the molecular mechanisms underpinning the different cane traits, namely, brix, rind color, and textures in the stems (S) and leaves (L) of sugarcane varieties FN41 and 165402.

View Article and Find Full Text PDF

Sugarcane-legume intercropping systems can effectively control pests and diseases as well as improve the fertility and health of farmland soil. However, little is known about the response of bacterial abundance, diversity, and community composition in the rhizosphere and non-rhizosphere soils under the sugarcane-peanut farming system. A field experiment was conducted with two treatments: sugarcane monoculture and sugarcane-peanut intercropping to examine the response of sugarcane parameters and edaphic factors.

View Article and Find Full Text PDF

Fertilizers and microbial communities that determine fertilizer efficiency are key to sustainable agricultural development. Sugarcane is an important sugar cash crop in China, and using bio-fertilizers is important for the sustainable development of China's sugar industry. However, information on the effects of bio-fertilizers on sugarcane soil microbiota has rarely been studied.

View Article and Find Full Text PDF

Continuous planting has a negative impact on sugarcane plant growth and reduces global sugarcane crop production, including in China. The response of soil bacteria, fungal, and arbuscular mycorrhizae (AM) fungal communities to continuous sugarcane cultivation has not been thoroughly documented. Using MiSeq sequencing technology, we analyzed soil samples from sugarcane fields with 1, 10, and 30 years of continuous cropping to see how monoculture time affected sugarcane yield, its rhizosphere soil characteristics and microbiota.

View Article and Find Full Text PDF

The continuous cropping of plants can result in the disruption of the soil microbial community and caused significant declines in yields. However, there are few reports on the effects of continuous cropping of sugarcane on the microbial community structure and functional pathway. In the current study, we analyzed the structural and functional changes of microbial community structure in the rhizospheric soil of sugarcane in different continuous cropping years using Illumina Miseq high-throughput sequencing and metagenomics analysis.

View Article and Find Full Text PDF

The dynamics of soil microbial communities are important for plant health and productivity. Soil microbial communities respond differently to fertilization. Organic water soluble fertilizer is an effective soil improver, which can effectively improve soil nutrient status and adjust soil pH value.

View Article and Find Full Text PDF

Organic fertilizers are critically important to soil fertility, microbial communities, and sustainable agricultural strategies. We compared the effect of two fertilizer groups (organic+chemical fertilizer: OM, chemical fertilizer: CK) on sugarcane growth, by observing the difference in microbial communities and functions, soil nutrient status, and agronomic characters of sugarcane. The results showed that the sugar content and yield of sugarcane increased significantly under organic fertilizer treatment.

View Article and Find Full Text PDF

The discrepancies across test sites and years, along with the interaction between cultivar and environment, make it difficult to accurately evaluate the differences of the sugarcane cultivars. Using a genotype main effect plus genotype-environment interaction (GGE) Biplot software, the yield performance data of seven sugarcane cultivars in the 8th Chinese National Sugarcane Regional Tests were analyzed to identify cultivars recommended for commercial release. Fn38 produced a high and stable sugar yield.

View Article and Find Full Text PDF