Publications by authors named "Zhaoliang Cui"

A membrane condenser (MC) is a novel membrane separation technology that utilizes the hydrophobic nature of porous membranes to capture water vapor from humid gas. Factors such as temperature, pressure, flow rate, and gas composition entering the membrane condenser play a crucial role in water recovery efficiency. This study utilized hydrophobic polytetrafluoroethylene (PTFE) hollow fiber membranes to create multiple identical membrane modules.

View Article and Find Full Text PDF

The research used polyethersulfone (PES) as a membrane material, polyvinylpyrrolidone (PVP) k30 and polyethylene glycol 400 (PEG 400) as water-soluble additives, and dimethylacetamide (DMAc) as a solvent to prepare hollow-fiber ultrafiltration membranes through a nonsolvent-induced phase separation (NIPS) process. The hydrophilic nature of PVP-k30 and PEG caused them to accumulate on the membrane surface during phase separation. The morphology, chemical composition, surface charge, and pore size of the PES membranes were evaluated by SEM, FTIR, zeta potential, and dextran filtration experiments.

View Article and Find Full Text PDF

Ethylene-chlorotrifluoroethylene (ECTFE) was first commercialized by DuPont in 1974. Its unique chemical structure gives it high heat resistance, mechanical strength, and corrosion resistance. But also due to these properties, it is difficult to prepare a membrane from it by the nonsolvent-induced phase separation (NIPS) method.

View Article and Find Full Text PDF

A high-performance polypropylene hollow fiber membrane (PP-HFM) was prepared by using a binary environmentally friendly solvent of polypropylene as the raw material, adopting the thermally induced phase separation (TIPS) method, and adjusting the raw material ratio. The binary diluents were soybean oil (SO) and acetyl tributyl citrate (ATBC). The suitable SO/ATBC ratio of 7/3 was based on the size change of the L-L phase separation region in PP-SO/ATBC thermodynamic phase diagram.

View Article and Find Full Text PDF

Aniline is a highly toxic organic pollutant with "carcinogenic, teratogenic and mutagenesis" characteristics. In the present paper, a membrane distillation and crystallization (MDCr) process was proposed to achieve zero liquid discharge (ZLD) of aniline wastewater. Hydrophobic polyvinylidene fluoride (PVDF) membranes were used in the membrane distillation (MD) process.

View Article and Find Full Text PDF

A large pore size Poly(vinylidene fluoride) (PVDF) membrane was prepared by the V-NIPS method using PVDF/N, N-dimethylacetamide (DMAc)/Polyvinyl pyrrolidone (PVP)/Polyethylene glycol (PEG) system. Firstly, the effect of different additive ratios on the membrane morphology and pore size was studied, and it was found that when the PVP:PEG ratio was 8:2, PVDF membranes with a relatively large pore size tend to be formed; the pore size is about 7.5 µm.

View Article and Find Full Text PDF

Integrated wastewater treatment processes are accepted as the best option for sustainable and unrestricted onsite water reuse. In this study, moving bed biofilm reactor (MBBR), membrane bioreactor (MBR), and direct contact membrane distillation (DCMD) treatment steps were integrated successively to obtain the combined advantages of these processes for industrial wastewater treatment. The MBBR step acts as the first step in the biological treatment and also mitigates foulant load on the MBR.

View Article and Find Full Text PDF

Fluoropolymer membranes are applied in membrane operations such as membrane distillation and membrane crystallization where hydrophobic porous membranes act as a physical barrier separating two phases. Due to their hydrophobic nature, only gaseous molecules are allowed to pass through the membrane and are collected on the permeate side, while the aqueous solution cannot penetrate. However, these two processes suffer problems such as membrane wetting, fouling or scaling.

View Article and Find Full Text PDF

Poly(ethylene-chlorotrifluoroethylene) (ECTFE) membrane is a hydrophobic membrane material that can be used to recover water from high-humidity gases in the membrane condenser (MC) process. In this study, ECTFE membranes were prepared by the thermally induced phase separation (TIPS) method using the green binary diluents triglyceride diacetate (TEGDA) and trioctyl trimellitate (TOTM). Thermodynamic phase diagrams of the ECTFE/TEGDA: TOTM system were made.

View Article and Find Full Text PDF

Due to the good hydrophobicity and chemical resistance of poly(ethylene trifluoroethylene) (ECTFE), it has been an attractive potential material for microfiltration, membrane distillation and more. However, few porous hydrophobic ECTFE membranes were prepared by thermally induced phase separation (TIPS) for membrane condenser applications. In this work, the diluent, di-n-octyl phthalate (DnOP), was selected to prepare the dope solutions.

View Article and Find Full Text PDF

Abstract: Since extracorporeal membrane oxygenator (ECMO) has been utilized to save countless lives by providing continuous extracorporeal breathing and circulation to patients with severe cardiopulmonary failure. In particular, it has played an important role during the COVID-19 epidemic. One of the important composites of ECMO is membrane oxygenator, and the core composite of the membrane oxygenator is hollow fiber membrane, which is not only a place for blood oxygenation, but also is a barrier between the blood and gas side.

View Article and Find Full Text PDF

Low concentration alcohols produced by state-of-the-art biological fermentation restrict subsequent purification processes for chemical, pharmaceutical, biofuel, and other applications. Herein, a rarely reported cucurbituril[] ( = 6, 8) is employed to pattern the thin-film composite membranes with controllable and quantifiable nanostrand structures through a host-guest strategy. The resulting nanofiltration membrane with such morphology is the first report that exhibits excellent separation performance for isopropyl alcohol (IPA) and water, condensing the initial 0.

View Article and Find Full Text PDF

A facile two-step synthesis beginning with commercial monomers to prepare copolyimides by Tröger's Base (TB) formation provides membranes for the first time with tunable gas transport relative to hydrogen separations, CO2 plasticization resistance, and good mechanical and thermal properties.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: