Publications by authors named "Zhaolei Qu"

Litter decomposition is a crucial biochemical process regulated by microbial activities in the forest ecosystem. However, the dynamic response of the fungal community during litter decomposition to vegetation changes is not well understood. Here, we investigated the litter decomposition rate, extracellular enzyme activities, fungal community, and nutrient cycling-related genes in leaf and twig litters over a three-year decomposition period in a pure forest and a mixed / forest.

View Article and Find Full Text PDF

Fungi play a crucial role in decomposing litter and facilitating the energy flow between aboveground plants and underground soil in forest ecosystems. However, our understanding how the fungal community involved in litter decomposition responds during forest succession, particularly in disease-driven succession, is still limited. This study investigated the activity of degrading enzyme, fungal community, and predicted function in litter after one year of decomposition in different types of forests during a forest succession gradient from coniferous to deciduous forest, induced by pine wilt disease.

View Article and Find Full Text PDF

Forest succession is important for sustainable forest management in terrestrial ecosystems. However, knowledge about the response of soil microbes to forest disease-driven succession is limited. In this study, we investigated the soil fungal biomass, soil enzyme activity, and fungal community structure and function in forests suffering succession processes produced by pine wilt disease from conifer to broadleaved forests using Illumina Miseq sequencing coupled with FUNGuild analysis.

View Article and Find Full Text PDF

Biochar is considered to be a possible means of carbon sequestration to alleviate climate change. However, the dynamics of the microbial community during wood decomposition after biochar application remain poorly understood. In this study, the wood-inhabiting bacterial community composition and its potential functions during a two-year decomposition period after the addition of different amounts of biochar (0.

View Article and Find Full Text PDF

Fungi perform crucial roles in nutrient cycles, but there is limited information on how soil fungal communities vary with stand age and tree species. has been extensively planted in China, which has caused severe soil erosion and water deficiency due to short rotation management. In this study, the fungal community structure and potential function in plantations with different ages (1-5 years) and species ( × , and ) under a tropical monsoon climate in China were characterized by Illumina Miseq coupled with FUNGuild analysis.

View Article and Find Full Text PDF

The boreal forest environment plays an important role in the global C cycle due to its high carbon storage capacity. However, relatively little is known about the forest fungal community at a regional scale in boreal forests. In the present study, we have re-analyzed the data from our previous studies and highlighted the core fungal community composition and potential functional groups in three forests dominated by Scots pine ( L.

View Article and Find Full Text PDF

Pine wilt disease (PWD), caused by pinewood nematode (PWN) , is globally one of the most destructive diseases of pine forests, especially in China. However, little is known about the effect of PWD on the host microbiome. In this study, the fungal community and functional structures in the needles, roots, and soil of and around naturally infected by PWN were investigated by using high-throughput sequencing coupled with the functional prediction (FUNGuild).

View Article and Find Full Text PDF

Soil microorganisms and extracellular enzymes play important roles in soil nutrient cycling. Currently, China has the second-largest area of eucalyptus plantations in the world. Information on the effects of eucalyptus age and species of trees on soil microbial biomass and enzyme activities, however, is limited.

View Article and Find Full Text PDF

Pine wilt disease (PWD) caused by the nematode is a devastating disease in conifer forests in Eurasia. However, information on the effect of PWD on the host microbial community is limited. In this study, the bacterial community structure and potential function in the needles, roots, and soil of diseased pine were studied under field conditions using Illumina MiSeq coupled with Phylogenetic Investigation of Communities by Reconstruction of Unobserved states (PICRUSt) software.

View Article and Find Full Text PDF