Publications by authors named "Zhaolan Du"

Ferroptosis, a commonly observed type of programmed cell death caused by abnormal metabolic and biochemical mechanisms, is frequently triggered by cellular stress. The occurrence of ferroptosis is predominantly linked to pathophysiological conditions due to the substantial impact of various metabolic pathways, including fatty acid metabolism and iron regulation, on cellular reactions to lipid peroxidation and ferroptosis. This mode of cell death serves as a fundamental factor in the development of numerous diseases, thereby presenting a range of therapeutic targets.

View Article and Find Full Text PDF

Metastatic propagation is the leading cause of death for most cancers. Prediction and elucidation of metastatic process is crucial for the treatment of cancer. Even though somatic mutations have been linked to tumorigenesis and metastasis, it is less explored whether metastatic events can be identified through genomic mutational signatures, which are concise descriptions of the mutational processes.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are involved in almost the entire cell life cycle through different mechanisms and play an important role in many key biological processes. Mutations and dysregulation of lncRNAs have been implicated in many complex human diseases. Therefore, identifying the relationship between lncRNAs and diseases not only contributes to biologists' understanding of disease mechanisms, but also provides new ideas and solutions for disease diagnosis, treatment, prognosis and prevention.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is an aggressive subtype of mammary carcinoma characterized by low expression levels of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Along with the rapid development of the single-cell RNA-sequencing (scRNA-seq) technology, the heterogeneity within the tumor microenvironment (TME) could be studied at a higher resolution level, facilitating an exploration of the mechanisms leading to poor prognosis during tumor progression. In previous studies, hypoxia was considered as an intrinsic characteristic of TME in solid tumors, which would activate downstream signaling pathways associated with angiogenesis and metastasis.

View Article and Find Full Text PDF